Existence of nonminimal solutions to an inhomogeneous elliptic equation with supercritical nonlinearity

IF 2.1 2区 数学 Q1 MATHEMATICS
Kazuhiro Ishige, S. Okabe, Tokushi Sato
{"title":"Existence of nonminimal solutions to an inhomogeneous elliptic equation with supercritical nonlinearity","authors":"Kazuhiro Ishige, S. Okabe, Tokushi Sato","doi":"10.1515/ans-2022-0073","DOIUrl":null,"url":null,"abstract":"Abstract In our previous paper [K. Ishige, S. Okabe, and T. Sato, A supercritical scalar field equation with a forcing term, J. Math. Pures Appl. 128 (2019), pp. 183–212], we proved the existence of a threshold κ ∗ > 0 {\\kappa }^{\\ast }\\gt 0 such that the elliptic problem for an inhomogeneous elliptic equation − Δ u + u = u p + κ μ -\\Delta u+u={u}^{p}+\\kappa \\mu in R N {{\\bf{R}}}^{N} possesses a positive minimal solution decaying at the space infinity if and only if 0 < κ ≤ κ ∗ 0\\lt \\kappa \\le {\\kappa }^{\\ast } . Here, N ≥ 2 N\\ge 2 , μ \\mu is a nontrivial nonnegative Radon measure in R N {{\\bf{R}}}^{N} with a compact support, and p > 1 p\\gt 1 is in the Joseph-Lundgren subcritical case. In this article, we prove the existence of nonminimal positive solutions to the elliptic problem. Our arguments are also applicable to inhomogeneous semilinear elliptic equations with exponential nonlinearity.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0073","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In our previous paper [K. Ishige, S. Okabe, and T. Sato, A supercritical scalar field equation with a forcing term, J. Math. Pures Appl. 128 (2019), pp. 183–212], we proved the existence of a threshold κ ∗ > 0 {\kappa }^{\ast }\gt 0 such that the elliptic problem for an inhomogeneous elliptic equation − Δ u + u = u p + κ μ -\Delta u+u={u}^{p}+\kappa \mu in R N {{\bf{R}}}^{N} possesses a positive minimal solution decaying at the space infinity if and only if 0 < κ ≤ κ ∗ 0\lt \kappa \le {\kappa }^{\ast } . Here, N ≥ 2 N\ge 2 , μ \mu is a nontrivial nonnegative Radon measure in R N {{\bf{R}}}^{N} with a compact support, and p > 1 p\gt 1 is in the Joseph-Lundgren subcritical case. In this article, we prove the existence of nonminimal positive solutions to the elliptic problem. Our arguments are also applicable to inhomogeneous semilinear elliptic equations with exponential nonlinearity.
一类具有超临界非线性的非齐次椭圆方程的非极小解的存在性
摘要在我们之前的论文[K.Ishige,S.Okabe和T.Sato,一个具有强迫项的超临界标量场方程,J.Math.Pures Appl.128(2019),pp.183-212]中,我们证明了阈值κ*>0{\kappa}^{\ast}\gt 0的存在性,使得非齐次椭圆方程-Δu+u=u p+κμ-\Δu+u={u}^}p}+\ kappa \mu在R N{\bf{R}}}}^{N}中的椭圆问题具有在空间无穷大衰减的正极小解当且仅当0<κ≤κ*0\lt\ kappa\le。这里,N≥2N\ge2,μ\mu是具有紧支撑的R N{\bf{R}}^{N}中的一个非平凡的非负Radon测度,并且p>1 p>gt 1是在Joseph Lundgren次临界情况下。本文证明了椭圆问题的非极小正解的存在性。我们的论点也适用于具有指数非线性的非齐次双线性椭圆方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信