{"title":"Compression and Bond Properties of Fired Clay Brick Masonry with Cocopeat Blended Binding Mortar","authors":"Sathiparan Navaratnarajah, Madhuranya Muralitharan","doi":"10.56748/ejse.233942","DOIUrl":null,"url":null,"abstract":"The production of agricultural, industrial, and demolition trash increases along with global population growth and industrial expansion. They endanger the environment when they are not properly recycled, repurposed, or disposed of. Cocopeat is one such agricultural waste. The use of cocopeat in binder cement is urged to support sustainable construction methods. Because it is seen as trash and discarded in landfills. Cocopeat is an environmentally friendly by-product which can be got during the coconut fibre extraction process. The current study investigates the strength properties of masonry built with binding mortar that incorporates cocopeat as opposed to traditional cement-sand mortar. The mortar prepared with four different integrations of cocopeat as sand replacement of 0, 4, 6 and 8% by weight was used for masonry. Fresh properties of cocopeat binding mortar and their effect on the mechanical characteristics of masonry were investigated. The test results revealed that the mechanical characteristics of masonry were enhanced with increased cocopeat content in the mortar.","PeriodicalId":52513,"journal":{"name":"Electronic Journal of Structural Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56748/ejse.233942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The production of agricultural, industrial, and demolition trash increases along with global population growth and industrial expansion. They endanger the environment when they are not properly recycled, repurposed, or disposed of. Cocopeat is one such agricultural waste. The use of cocopeat in binder cement is urged to support sustainable construction methods. Because it is seen as trash and discarded in landfills. Cocopeat is an environmentally friendly by-product which can be got during the coconut fibre extraction process. The current study investigates the strength properties of masonry built with binding mortar that incorporates cocopeat as opposed to traditional cement-sand mortar. The mortar prepared with four different integrations of cocopeat as sand replacement of 0, 4, 6 and 8% by weight was used for masonry. Fresh properties of cocopeat binding mortar and their effect on the mechanical characteristics of masonry were investigated. The test results revealed that the mechanical characteristics of masonry were enhanced with increased cocopeat content in the mortar.
期刊介绍:
The Electronic Journal of Structural Engineering (EJSE) is an international forum for the dissemination and discussion of leading edge research and practical applications in Structural Engineering. It comprises peer-reviewed technical papers, discussions and comments, and also news about conferences, workshops etc. in Structural Engineering. Original papers are invited from individuals involved in the field of structural engineering and construction. The areas of special interests include the following, but are not limited to: Analytical and design methods Bridges and High-rise Buildings Case studies and failure investigation Innovations in design and new technology New Construction Materials Performance of Structures Prefabrication Technology Repairs, Strengthening, and Maintenance Stability and Scaffolding Engineering Soil-structure interaction Standards and Codes of Practice Structural and solid mechanics Structural Safety and Reliability Testing Technologies Vibration, impact and structural dynamics Wind and earthquake engineering. EJSE is seeking original papers (research or state-of the art reviews) of the highest quality for consideration for publication. The papers will be published within 3 to 6 months. The papers are expected to make a significant contribution to the research and development activities of the academic and professional engineering community.