{"title":"On Promotion and Quasi-Tangled Labelings of Posets","authors":"Eliot Hodges","doi":"10.1007/s00026-023-00646-2","DOIUrl":null,"url":null,"abstract":"<div><p>In 2022, Defant and Kravitz introduced extended promotion (denoted <span>\\( \\partial \\)</span>), a map that acts on the set of labelings of a poset. Extended promotion is a generalization of Schützenberger’s promotion operator, a well-studied map that permutes the set of linear extensions of a poset. It is known that if <i>L</i> is a labeling of an <i>n</i>-element poset <i>P</i>, then <span>\\( \\partial ^{n-1}(L) \\)</span> is a linear extension. This allows us to regard <span>\\( \\partial \\)</span> as a sorting operator on the set of all labelings of <i>P</i>, where we think of the linear extensions of <i>P</i> as the labelings which have been sorted. The labelings requiring <span>\\( n-1 \\)</span> applications of <span>\\( \\partial \\)</span> to be sorted are called <i>tangled</i>; the labelings requiring <span>\\( n-2 \\)</span> applications are called <i>quasi-tangled</i>. We count the quasi-tangled labelings of a relatively large class of posets called <i>inflated rooted trees with deflated leaves</i>. Given an <i>n</i>-element poset with a unique minimal element with the property that the minimal element has exactly one parent, it follows from the aforementioned enumeration that this poset has <span>\\( 2(n-1)!-(n-2)! \\)</span> quasi-tangled labelings. Using similar methods, we outline an algorithmic approach to enumerating the labelings requiring <span>\\( n-k-1 \\)</span> applications to be sorted for any fixed <span>\\( k\\in \\{1,\\ldots ,n-2\\} \\)</span>. We also make partial progress towards proving a conjecture of Defant and Kravitz on the maximum possible number of tangled labelings of an <i>n</i>-element poset.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00646-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In 2022, Defant and Kravitz introduced extended promotion (denoted \( \partial \)), a map that acts on the set of labelings of a poset. Extended promotion is a generalization of Schützenberger’s promotion operator, a well-studied map that permutes the set of linear extensions of a poset. It is known that if L is a labeling of an n-element poset P, then \( \partial ^{n-1}(L) \) is a linear extension. This allows us to regard \( \partial \) as a sorting operator on the set of all labelings of P, where we think of the linear extensions of P as the labelings which have been sorted. The labelings requiring \( n-1 \) applications of \( \partial \) to be sorted are called tangled; the labelings requiring \( n-2 \) applications are called quasi-tangled. We count the quasi-tangled labelings of a relatively large class of posets called inflated rooted trees with deflated leaves. Given an n-element poset with a unique minimal element with the property that the minimal element has exactly one parent, it follows from the aforementioned enumeration that this poset has \( 2(n-1)!-(n-2)! \) quasi-tangled labelings. Using similar methods, we outline an algorithmic approach to enumerating the labelings requiring \( n-k-1 \) applications to be sorted for any fixed \( k\in \{1,\ldots ,n-2\} \). We also make partial progress towards proving a conjecture of Defant and Kravitz on the maximum possible number of tangled labelings of an n-element poset.