Invariants of the trace map and uniform spectral properties for discrete Sturmian Dirac operators

Pub Date : 2019-04-01 DOI:10.18910/72324
R. Prado, R. Charão
{"title":"Invariants of the trace map and uniform spectral properties for discrete Sturmian Dirac operators","authors":"R. Prado, R. Charão","doi":"10.18910/72324","DOIUrl":null,"url":null,"abstract":"We establish invariants for the trace map associated to a family of 1D discrete Dirac operators with Sturmian potentials. Using these invariants we prove that the operators have purely singular continuous spectrum of zero Lebesgue measure, uniformly on the mass and parameters that define the potentials. For rotation numbers of bounded density we prove that these Dirac operators have purely α -continuous spectrum, as to the Schr¨odinger case, for some α ∈ (0 , 1). To the Sturmian Schr¨odinger and Dirac models we establish a comparison between invariants of the trace maps, which allows to compare the numbers α ’s and lower bounds on transport exponents.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/72324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We establish invariants for the trace map associated to a family of 1D discrete Dirac operators with Sturmian potentials. Using these invariants we prove that the operators have purely singular continuous spectrum of zero Lebesgue measure, uniformly on the mass and parameters that define the potentials. For rotation numbers of bounded density we prove that these Dirac operators have purely α -continuous spectrum, as to the Schr¨odinger case, for some α ∈ (0 , 1). To the Sturmian Schr¨odinger and Dirac models we establish a comparison between invariants of the trace maps, which allows to compare the numbers α ’s and lower bounds on transport exponents.
分享
查看原文
离散Sturmian Dirac算子的迹映射不变量和均匀谱性质
我们建立了与具有Sturmian势的1D离散Dirac算子族相关的迹映射的不变量。利用这些不变量,我们证明了算子具有零Lebesgue测度的纯奇异连续谱,在质量和定义势的参数上是一致的。对于有界密度的旋转数,我们证明了这些Dirac算子具有纯α-连续谱,对于某些α∈(0,1)的Schr¨odinger情形。对于Sturmian-Schr¨odinger和Dirac模型,我们建立了迹映射不变量之间的比较,这允许比较数α和传输指数的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信