H. Kwon, Youngjin Park, U. Nam, Eunkyung Lee, E. Byon
{"title":"Comparative Research on Corrosion Resistant Non-Skid Al and Al-3%Ti Coating Fabricated by Twin Wire arc Spraying","authors":"H. Kwon, Youngjin Park, U. Nam, Eunkyung Lee, E. Byon","doi":"10.3365/kjmm.2023.61.4.242","DOIUrl":null,"url":null,"abstract":"To ensure the lifetime of marine constructions and the safety of workers and pedestrians, corrosion protective non-skid coating is an effective solution. However, the conventional polymer-based coating has some limitations. In this study, newly-suggested Al and Al-3%Ti coatings were deposited on high strength low alloyed steel substrate using twin wire arc spraying (TWAS). The static and dynamic friction coefficients of the Al-based coatings under dry and wet conditions were measured using portable friction testers. To evaluate the corrosion behavior under sea water conditions, a cyclic potentiodynamic polarization test (CPDP) and salt solution immersion test (SSIT) were performed with a 3.5% NaCl solution. To confirm the coating degradation, mechanical properties (Vickers hardness and adhesion strength) were compared before and after SSIT. The results showed that the TWAS Al-based coatings were well fabricated on HSLA steel and had the general microstructure of a thermal spray. The coatings provided excellent corrosion protection for the steel substrate and greatly increased the friction coefficient of the surface. The Vickers hardness slightly increased and adhesion strength decreased after SSIT. The microstructure observation revealed that the TWAS coatings had a bimodal structure induced by non-uniform droplet generation at the TWAS tips. After SSIT, some oxides formed on the surface and porous regions of the coatings. This indicated that the TWAS coating successfully provided corrosion protection and non-skid properties.","PeriodicalId":17894,"journal":{"name":"Korean Journal of Metals and Materials","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Metals and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3365/kjmm.2023.61.4.242","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To ensure the lifetime of marine constructions and the safety of workers and pedestrians, corrosion protective non-skid coating is an effective solution. However, the conventional polymer-based coating has some limitations. In this study, newly-suggested Al and Al-3%Ti coatings were deposited on high strength low alloyed steel substrate using twin wire arc spraying (TWAS). The static and dynamic friction coefficients of the Al-based coatings under dry and wet conditions were measured using portable friction testers. To evaluate the corrosion behavior under sea water conditions, a cyclic potentiodynamic polarization test (CPDP) and salt solution immersion test (SSIT) were performed with a 3.5% NaCl solution. To confirm the coating degradation, mechanical properties (Vickers hardness and adhesion strength) were compared before and after SSIT. The results showed that the TWAS Al-based coatings were well fabricated on HSLA steel and had the general microstructure of a thermal spray. The coatings provided excellent corrosion protection for the steel substrate and greatly increased the friction coefficient of the surface. The Vickers hardness slightly increased and adhesion strength decreased after SSIT. The microstructure observation revealed that the TWAS coatings had a bimodal structure induced by non-uniform droplet generation at the TWAS tips. After SSIT, some oxides formed on the surface and porous regions of the coatings. This indicated that the TWAS coating successfully provided corrosion protection and non-skid properties.
期刊介绍:
The Korean Journal of Metals and Materials is a representative Korean-language journal of the Korean Institute of Metals and Materials (KIM); it publishes domestic and foreign academic papers related to metals and materials, in abroad range of fields from metals and materials to nano-materials, biomaterials, functional materials, energy materials, and new materials, and its official ISO designation is Korean J. Met. Mater.