AN ESTIMATE OF APPROXIMATION OF A MATRIX-VALUED FUNCTION BY AN INTERPOLATION POLYNOMIAL

IF 0.6 Q3 MATHEMATICS
V. Kurbatov, I. Kurbatova
{"title":"AN ESTIMATE OF APPROXIMATION OF A MATRIX-VALUED FUNCTION BY AN INTERPOLATION POLYNOMIAL","authors":"V. Kurbatov, I. Kurbatova","doi":"10.32523/2077-9879-2020-11-1-86-94","DOIUrl":null,"url":null,"abstract":"Let $A$ be a square complex matrix, $z_1$, ..., $z_{n}\\in\\mathbb C$ be (possibly repetitive) points of interpolation, $f$ be analytic in a neighborhood of the convex hull of the union of the spectrum of $A$ and the points $z_1$, ..., $z_{n}$, and $p$ be the interpolation polynomial of $f$, constructed by the points $z_1$, ..., $z_{n}$. It is proved that under these assumptions $$\\Vert f(A)-p(A)\\Vert\\le\\frac1{n!} \\max_{t\\in[0,1];\\,\\mu\\in\\text{co}\\{z_1,z_{2},\\dots,z_{n}\\}}\\bigl\\Vert\\Omega(A)f^{{(n)}} \\bigl((1-t)\\mu\\mathbf1+tA\\bigr)\\bigr\\Vert,$$ where $\\Omega(z)=\\prod_{k=1}^n(z-z_k)$.","PeriodicalId":44248,"journal":{"name":"Eurasian Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2077-9879-2020-11-1-86-94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Let $A$ be a square complex matrix, $z_1$, ..., $z_{n}\in\mathbb C$ be (possibly repetitive) points of interpolation, $f$ be analytic in a neighborhood of the convex hull of the union of the spectrum of $A$ and the points $z_1$, ..., $z_{n}$, and $p$ be the interpolation polynomial of $f$, constructed by the points $z_1$, ..., $z_{n}$. It is proved that under these assumptions $$\Vert f(A)-p(A)\Vert\le\frac1{n!} \max_{t\in[0,1];\,\mu\in\text{co}\{z_1,z_{2},\dots,z_{n}\}}\bigl\Vert\Omega(A)f^{{(n)}} \bigl((1-t)\mu\mathbf1+tA\bigr)\bigr\Vert,$$ where $\Omega(z)=\prod_{k=1}^n(z-z_k)$.
用插值多项式估计矩阵值函数的近似值
设$A$是一个平方复矩阵,$z_1$$z_{n}\in\mathbb C$是(可能重复的)插值点,$f$在$a$的谱与点$z_1$的并集的凸包的邻域中是解析的$z_{n}$,$p$是$f$的插值多项式,由点$z_1$$z_{n}$。证明了在这些假设下$$\Vert f(A)-p(A)\Vert\le\frac1{n!}\max_ k)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
50.00%
发文量
2
期刊介绍: Publication of carefully selected original re­search papers in all areas of mathematics written by mathematicians first of all from Europe and Asia. However papers by mathematicians from other continents are also welcome. From time to time Eurasian Mathematical Journal will also publish survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信