Shrinkage with shrunken shoulders: Gibbs sampling shrinkage model posteriors with guaranteed convergence rates.

IF 4.9 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Bayesian Analysis Pub Date : 2023-06-01 Epub Date: 2022-04-05 DOI:10.1214/22-ba1308
Akihiko Nishimura, Marc A Suchard
{"title":"Shrinkage with shrunken shoulders: Gibbs sampling shrinkage model posteriors with guaranteed convergence rates.","authors":"Akihiko Nishimura, Marc A Suchard","doi":"10.1214/22-ba1308","DOIUrl":null,"url":null,"abstract":"<p><p>Use of continuous shrinkage priors - with a \"spike\" near zero and heavy-tails towards infinity - is an increasingly popular approach to induce sparsity in parameter estimates. When the parameters are only weakly identified by the likelihood, however, the posterior may end up with tails as heavy as the prior, jeopardizing robustness of inference. A natural solution is to \"shrink the shoulders\" of a shrinkage prior by lightening up its tails beyond a reasonable parameter range, yielding a <i>regularized</i> version of the prior. We develop a regularization approach which, unlike previous proposals, preserves computationally attractive structures of original shrinkage priors. We study theoretical properties of the Gibbs sampler on resulting posterior distributions, with emphasis on convergence rates of the Pólya-Gamma Gibbs sampler for sparse logistic regression. Our analysis shows that the proposed regularization leads to geometric ergodicity under a broad range of global-local shrinkage priors. Essentially, the only requirement is for the prior <math><msub><mrow><mi>π</mi></mrow><mrow><mtext>local</mtext></mrow></msub><mo>(</mo><mo>⋅</mo><mo>)</mo></math> on the local scale <math><mi>λ</mi></math> to satisfy <math><msub><mrow><mi>π</mi></mrow><mrow><mtext>local</mtext></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo><mo><</mo><mo>∞</mo></math>. If <math><msub><mrow><mi>π</mi></mrow><mrow><mtext>local</mtext></mrow></msub><mo>(</mo><mo>⋅</mo><mo>)</mo></math> further satisfies <math><msub><mrow><mtext>lim</mtext></mrow><mrow><mi>λ</mi><mo>→</mo><mn>0</mn></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mtext>local</mtext></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>/</mo><msup><mrow><mi>λ</mi></mrow><mrow><mi>a</mi></mrow></msup><mo><</mo><mo>∞</mo></math> for <math><mi>a</mi><mo>></mo><mn>0</mn></math>, as in the case of Bayesian bridge priors, we show the sampler to be uniformly ergodic.</p>","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11105165/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ba1308","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Use of continuous shrinkage priors - with a "spike" near zero and heavy-tails towards infinity - is an increasingly popular approach to induce sparsity in parameter estimates. When the parameters are only weakly identified by the likelihood, however, the posterior may end up with tails as heavy as the prior, jeopardizing robustness of inference. A natural solution is to "shrink the shoulders" of a shrinkage prior by lightening up its tails beyond a reasonable parameter range, yielding a regularized version of the prior. We develop a regularization approach which, unlike previous proposals, preserves computationally attractive structures of original shrinkage priors. We study theoretical properties of the Gibbs sampler on resulting posterior distributions, with emphasis on convergence rates of the Pólya-Gamma Gibbs sampler for sparse logistic regression. Our analysis shows that the proposed regularization leads to geometric ergodicity under a broad range of global-local shrinkage priors. Essentially, the only requirement is for the prior πlocal() on the local scale λ to satisfy πlocal(0)<. If πlocal() further satisfies limλ0πlocal(λ)/λa< for a>0, as in the case of Bayesian bridge priors, we show the sampler to be uniformly ergodic.

收缩肩部:Gibbs抽样收缩模型后验与保证收敛率
.使用连续收缩先验——“尖峰”接近零,尾部较重——是一种越来越流行的方法,可以在参数估计中引入稀疏性。然而,当参数仅通过可能性进行弱识别时,后验结果可能与前验结果一样重,从而危及推理的稳健性。一个自然的解决方案是通过将收缩先验的尾部变轻到合理的参数范围之外来“收缩肩部”,从而产生先验的正则化版本。我们开发了一种正则化方法,与以前的建议不同,该方法保留了原始收缩先验的计算上有吸引力的结构。我们研究了吉布斯采样器在所得后验分布上的理论性质,重点研究了稀疏逻辑回归的P´olya-Gamma Gibbs采样器的收敛速度。我们的分析表明,所提出的正则化导致了在广泛的全局局部收缩先验下的几何遍历性。本质上,唯一的要求是局部尺度λ上的先验πlocal(·)满足πlocal<∞。如果πlocal(·)进一步满足limλ→ 0π局部(λ)/λa<∞对于a>0,就像在贝叶斯桥先验的情况下一样,我们证明了采样器是一致遍历的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bayesian Analysis
Bayesian Analysis 数学-数学跨学科应用
CiteScore
6.50
自引率
13.60%
发文量
59
审稿时长
>12 weeks
期刊介绍: Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining. Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信