Separation for isometric group actions and hyperimaginary independence

IF 0.5 3区 数学 Q3 MATHEMATICS
G. Conant, James Hanson
{"title":"Separation for isometric group actions and hyperimaginary independence","authors":"G. Conant, James Hanson","doi":"10.4064/fm167-2-2022","DOIUrl":null,"url":null,"abstract":". We generalize P. M. Neumann’s Lemma to the setting of isometric actions on metric spaces and use it to prove several results in continuous model theory related to algebraic independence. In particular, we show that algebraic independence satisfies the full existence axiom (which answers a question of Goldbring) and is implied by dividing independence. We also use the relation- ship between hyperimaginaries and continuous imaginaries to derive further results that are new even for discrete theories. Specifically, we show that if M is a monster model of a discrete or continuous theory, then bounded-closure in- dependence in M heq satisfies full existence (which answers a question of Adler) and is implied by dividing independence.","PeriodicalId":55138,"journal":{"name":"Fundamenta Mathematicae","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm167-2-2022","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

. We generalize P. M. Neumann’s Lemma to the setting of isometric actions on metric spaces and use it to prove several results in continuous model theory related to algebraic independence. In particular, we show that algebraic independence satisfies the full existence axiom (which answers a question of Goldbring) and is implied by dividing independence. We also use the relation- ship between hyperimaginaries and continuous imaginaries to derive further results that are new even for discrete theories. Specifically, we show that if M is a monster model of a discrete or continuous theory, then bounded-closure in- dependence in M heq satisfies full existence (which answers a question of Adler) and is implied by dividing independence.
等距群动作的分离与超想象独立性
. 我们将p.m. Neumann引理推广到度量空间上的等距作用集,并用它证明了连续模型理论中与代数无关的几个结果。特别地,我们证明了代数独立性满足完全存在公理(它回答了Goldbring的一个问题),并通过划分独立性隐含。我们还利用超虚数和连续虚数之间的关系,进一步推导出即使对于离散理论也是新的结果。具体来说,我们证明了如果M是一个离散或连续理论的怪物模型,那么M heq中的有界闭包依赖满足完全存在(这回答了Adler的一个问题),并通过划分独立性来暗示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fundamenta Mathematicae
Fundamenta Mathematicae 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: FUNDAMENTA MATHEMATICAE concentrates on papers devoted to Set Theory, Mathematical Logic and Foundations of Mathematics, Topology and its Interactions with Algebra, Dynamical Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信