Verhulst Discrete Logistic Growth

Q4 Mathematics
D. Kalman
{"title":"Verhulst Discrete Logistic Growth","authors":"D. Kalman","doi":"10.1080/0025570X.2023.2199676","DOIUrl":null,"url":null,"abstract":"Summary In undergraduate mathematics classes, the most common discrete version of logistic growth is defined by the difference equation . While this is a natural analog of the logistic differential equation, and while in many cases it produces results similar to those of the continuous model, it can also give rise to chaotic behavior. This paper derives in a natural way an alternative discrete logistic model, defined by the Verhulst difference equation, with several noteworthy properties. For example the Verhulst equation has closed form solutions given by continuous logistic curves and never leads to chaotic behavior. Our development of the Verhulst equation also provides a beautiful example of the formulation-application-refinement cycle of mathematical modeling. For these and other reasons, the Verhulst equation deserves a place in the undergraduate curriculum alongside the more familiar logistic difference equation given above.","PeriodicalId":18344,"journal":{"name":"Mathematics Magazine","volume":"96 1","pages":"244 - 258"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0025570X.2023.2199676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Summary In undergraduate mathematics classes, the most common discrete version of logistic growth is defined by the difference equation . While this is a natural analog of the logistic differential equation, and while in many cases it produces results similar to those of the continuous model, it can also give rise to chaotic behavior. This paper derives in a natural way an alternative discrete logistic model, defined by the Verhulst difference equation, with several noteworthy properties. For example the Verhulst equation has closed form solutions given by continuous logistic curves and never leads to chaotic behavior. Our development of the Verhulst equation also provides a beautiful example of the formulation-application-refinement cycle of mathematical modeling. For these and other reasons, the Verhulst equation deserves a place in the undergraduate curriculum alongside the more familiar logistic difference equation given above.
Verhulst离散物流增长
摘要在本科数学课堂上,最常见的离散形式的逻辑增长是由差分方程定义的。虽然这是逻辑微分方程的自然模拟,而且在许多情况下,它产生的结果与连续模型的结果相似,但它也可能导致混沌行为。本文以一种自然的方式导出了一个由Verhulst差分方程定义的替代离散逻辑模型,该模型具有几个值得注意的性质。例如,Verhulst方程具有由连续逻辑曲线给出的闭合形式解,并且从不导致混沌行为。我们对Verhulst方程的开发也为数学建模的公式应用精化周期提供了一个很好的例子。由于这些和其他原因,Verhulst方程应该与上面给出的更熟悉的逻辑差分方程一起在本科生课程中占有一席之地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics Magazine
Mathematics Magazine Mathematics-Mathematics (all)
CiteScore
0.20
自引率
0.00%
发文量
68
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信