{"title":"Using Bernoulli maps to accelerate mixing of a random walk on the torus","authors":"Gautam Iyer, E. Lu, J. Nolen","doi":"10.1090/qam/1668","DOIUrl":null,"url":null,"abstract":"<p>We study the mixing time of a random walk on the torus, alternated with a Lebesgue measure preserving Bernoulli map. Without the Bernoulli map, the mixing time of the random walk alone is <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis 1 slash epsilon squared right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:msup>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(1/\\varepsilon ^2)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\">\n <mml:semantics>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\varepsilon</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the step size. Our main results show that for a class of Bernoulli maps, when the random walk is alternated with the Bernoulli map <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\">\n <mml:semantics>\n <mml:mi>φ<!-- φ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\varphi</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> the mixing time becomes <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis StartAbsoluteValue ln epsilon EndAbsoluteValue right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">|<!-- | --></mml:mo>\n <mml:mi>ln</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:mo fence=\"false\" stretchy=\"false\">|<!-- | --></mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(\\lvert \\ln \\varepsilon \\rvert )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We also study the <italic>dissipation time</italic> of this process, and obtain <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis StartAbsoluteValue ln epsilon EndAbsoluteValue right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">|<!-- | --></mml:mo>\n <mml:mi>ln</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:mo fence=\"false\" stretchy=\"false\">|<!-- | --></mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(\\lvert \\ln \\varepsilon \\rvert )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> upper and lower bounds with explicit constants.</p>","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1668","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
We study the mixing time of a random walk on the torus, alternated with a Lebesgue measure preserving Bernoulli map. Without the Bernoulli map, the mixing time of the random walk alone is O(1/ε2)O(1/\varepsilon ^2), where ε\varepsilon is the step size. Our main results show that for a class of Bernoulli maps, when the random walk is alternated with the Bernoulli map φ\varphi the mixing time becomes O(|lnε|)O(\lvert \ln \varepsilon \rvert ). We also study the dissipation time of this process, and obtain O(|lnε|)O(\lvert \ln \varepsilon \rvert ) upper and lower bounds with explicit constants.
期刊介绍:
The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume.
This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.