Finding the strong defining hyperplanes of production possibility set with constant returns to scale using the linear independent vectors

IF 0.1 Q4 MATHEMATICS
N. Rafatimaleki, M. Rostamy-Malkhalifeh, F. Hosseinzadeh lotfi
{"title":"Finding the strong defining hyperplanes of production possibility set with constant returns to scale using the linear independent vectors","authors":"N. Rafatimaleki, M. Rostamy-Malkhalifeh, F. Hosseinzadeh lotfi","doi":"10.1080/23311835.2018.1447222","DOIUrl":null,"url":null,"abstract":"Abstract Production Possibility Set (PPS) is defined as the set of all inputs and outputs of a system in which inputs can produce outputs. In Data Envelopment Analysis (DEA), it is highly important to identify the defining hyperplanes and especially the strong defining hyperplanes of the empirical PPS. Although DEA models can determine the efficiency of a Decision Making Unit (DMU), but they cannot present efficient frontiers of PPS. In this paper, we propose a new method to determine all strong efficient (Pareto-efficient) DMUs and strong defining hyperplanes of the PPS with constant returns to scale including the Pareto-efficient DMUs. Furthermore, we apply the newly proposed method to find the normal vectors or gradient of the strong defining hyperplanes of the PPS including strong efficient DMUs which are under evaluation. Consequently, the equations of these hyperplanes are determined. To illustrate the applicability of the proposed method, some numerical examples are finally provided. Our method can be easily implemented using existing packages for operation research, such as GAMS.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311835.2018.1447222","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311835.2018.1447222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Production Possibility Set (PPS) is defined as the set of all inputs and outputs of a system in which inputs can produce outputs. In Data Envelopment Analysis (DEA), it is highly important to identify the defining hyperplanes and especially the strong defining hyperplanes of the empirical PPS. Although DEA models can determine the efficiency of a Decision Making Unit (DMU), but they cannot present efficient frontiers of PPS. In this paper, we propose a new method to determine all strong efficient (Pareto-efficient) DMUs and strong defining hyperplanes of the PPS with constant returns to scale including the Pareto-efficient DMUs. Furthermore, we apply the newly proposed method to find the normal vectors or gradient of the strong defining hyperplanes of the PPS including strong efficient DMUs which are under evaluation. Consequently, the equations of these hyperplanes are determined. To illustrate the applicability of the proposed method, some numerical examples are finally provided. Our method can be easily implemented using existing packages for operation research, such as GAMS.
用线性独立向量求出具有恒定回报的生产可能性集的强定义超平面
摘要生产可能性集(PPS)是一个系统中所有输入和输出的集合,在这个系统中,输入可以产生输出。在数据包络分析(DEA)中,识别经验PPS的定义超平面,特别是强定义超平面是非常重要的。虽然DEA模型可以确定决策单元(DMU)的效率,但不能给出PPS的有效边界。在本文中,我们提出了一种新的方法来确定所有强有效(Pareto-efficient) dmu和包括Pareto-efficient dmu在内的具有恒定规模收益的PPS的强定义超平面。此外,我们还应用该方法求出了包括正在评估的强有效dmu在内的强定义超平面的法向量或梯度。因此,确定了这些超平面的方程。为了说明所提方法的适用性,最后给出了一些数值算例。我们的方法可以很容易地实现使用现有的软件包运筹学,如GAMS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信