A heuristic method based on multi-objective optimization concept for solving RNA multiple alignment

Q1 Mathematics
Arakil Chentoufi, Abdelhakim El Fatmi, M. A. Bekri, Said Benhlima, M. Sabbane
{"title":"A heuristic method based on multi-objective optimization concept for solving RNA multiple alignment","authors":"Arakil Chentoufi, Abdelhakim El Fatmi, M. A. Bekri, Said Benhlima, M. Sabbane","doi":"10.15866/ireaco.v10i5.12395","DOIUrl":null,"url":null,"abstract":"Multiple sequence alignment (MSA) is an NP-complete and important problem in Bioinformatics. For this reason, a number of computational approaches have been developed to achieve the optimal alignment. However, this goal remains a big challenge. MSA can be also treated as a multi-objective optimization problem. In the same way, we present a new method using Pareto Front and Genetic Algorithm (GA), called MOO-RNA, to align a set of RNA sequences. We validate our method on a set of alignments of Bralibase II. The results show that the quality of our method, in terms of Sum-of-Pairs Score (SPS) and Structure Conservation Index (SCI), is improved.","PeriodicalId":38433,"journal":{"name":"International Review of Automatic Control","volume":"10 1","pages":"371"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Automatic Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/ireaco.v10i5.12395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple sequence alignment (MSA) is an NP-complete and important problem in Bioinformatics. For this reason, a number of computational approaches have been developed to achieve the optimal alignment. However, this goal remains a big challenge. MSA can be also treated as a multi-objective optimization problem. In the same way, we present a new method using Pareto Front and Genetic Algorithm (GA), called MOO-RNA, to align a set of RNA sequences. We validate our method on a set of alignments of Bralibase II. The results show that the quality of our method, in terms of Sum-of-Pairs Score (SPS) and Structure Conservation Index (SCI), is improved.
基于多目标优化思想的RNA多重比对启发式求解方法
多序列比对(MSA)是生物信息学中一个NP完全的重要问题。出于这个原因,已经开发了许多计算方法来实现最佳对准。然而,这一目标仍然是一个巨大的挑战。MSA也可以看作是一个多目标优化问题。同样,我们提出了一种使用Pareto Front和遗传算法(GA)的新方法,称为MOO-RNA,来排列一组RNA序列。我们在Bralibase II的一组比对上验证了我们的方法。结果表明,我们的方法在对和分数(SPS)和结构守恒指数(SCI)方面的质量得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Review of Automatic Control
International Review of Automatic Control Engineering-Control and Systems Engineering
CiteScore
2.70
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信