Three-Dimensional Dynamic Modelling and Validation for Vibration of a Beam-Cable System

IF 1.8 4区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
M. Jalali, G. Rideout
{"title":"Three-Dimensional Dynamic Modelling and Validation for Vibration of a Beam-Cable System","authors":"M. Jalali, G. Rideout","doi":"10.1080/13873954.2020.1871372","DOIUrl":null,"url":null,"abstract":"ABSTRACT In order to understand and to predict cable effects on structures, three-dimensional numerical models for a stranded cable and a beam–cable system consisting of a cantilever beam and two connected cables are presented. The multibond graph formalism is used to model the coupled cable–beam system, with the cable and beam substructures using 3D rigid lumped segments. The stranded cables are modelled considering the bending stiffness, tension and sag due to self-weight. The generally applicable cable-structure modelling approach in this paper is applied to vibration-based non-destructive evaluation of electrical utility poles, where simulated modal testing of the pole-conductor system is required. Experimental parametrization of a stranded cable is carried out using specially designed apparatus to accurately measure the bending stiffness at different tensions, and to measure the axial stiffness and axial damping. A reduced-scale lab set-up and finite element models are developed for verification of the numerical models. Experimental free and forced vibration testing is performed on individual cantilever beam and stranded cable subsystems, and on the coupled cable–beam system to verify the numerical models in the frequency and time domains. It is concluded that the 3D bond graph models can be used to understand the interaction between cable and structure, allowing prediction of the in-plane and out-of-plane natural frequencies and time response of the connected pole. It is also concluded that by adding the cable to the pole structure, some modes emerge in the eigenvalue solution of the system which may be categorized as cable-dominated modes, pole-dominated or hybrid modes.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"27 1","pages":"87 - 116"},"PeriodicalIF":1.8000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13873954.2020.1871372","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2020.1871372","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT In order to understand and to predict cable effects on structures, three-dimensional numerical models for a stranded cable and a beam–cable system consisting of a cantilever beam and two connected cables are presented. The multibond graph formalism is used to model the coupled cable–beam system, with the cable and beam substructures using 3D rigid lumped segments. The stranded cables are modelled considering the bending stiffness, tension and sag due to self-weight. The generally applicable cable-structure modelling approach in this paper is applied to vibration-based non-destructive evaluation of electrical utility poles, where simulated modal testing of the pole-conductor system is required. Experimental parametrization of a stranded cable is carried out using specially designed apparatus to accurately measure the bending stiffness at different tensions, and to measure the axial stiffness and axial damping. A reduced-scale lab set-up and finite element models are developed for verification of the numerical models. Experimental free and forced vibration testing is performed on individual cantilever beam and stranded cable subsystems, and on the coupled cable–beam system to verify the numerical models in the frequency and time domains. It is concluded that the 3D bond graph models can be used to understand the interaction between cable and structure, allowing prediction of the in-plane and out-of-plane natural frequencies and time response of the connected pole. It is also concluded that by adding the cable to the pole structure, some modes emerge in the eigenvalue solution of the system which may be categorized as cable-dominated modes, pole-dominated or hybrid modes.
梁-索系统振动的三维动力学建模与验证
为了理解和预测索对结构的影响,本文提出了由悬臂梁和两根相连索组成的绞索和梁-索系统的三维数值模型。采用多键图形式对索-梁耦合系统进行建模,其中索-梁子结构采用三维刚性集总分段。考虑了钢索的弯曲刚度、张力和自重引起的垂度,对钢索进行了建模。本文将一般适用的索结构建模方法应用于基于振动的电线杆无损评估中,需要对电线杆-导体系统进行模拟模态试验。采用专门设计的仪器对绞合电缆进行了实验参数化,准确测量了不同张力下的弯曲刚度,并测量了轴向刚度和轴向阻尼。为了验证数值模型,建立了缩小比例的实验室装置和有限元模型。对单个悬臂梁和绞缆子系统以及耦合索梁系统进行了自由和强制振动试验,在频域和时域上验证了数值模型。结果表明,三维键合图模型可以用来理解索与结构之间的相互作用,从而可以预测连接杆的面内、面外固有频率和时间响应。在杆结构中加入索后,系统的本征值解中出现了一些模态,可分为索主导模态、杆主导模态和混合模态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.30%
发文量
7
审稿时长
>12 weeks
期刊介绍: Mathematical and Computer Modelling of Dynamical Systems (MCMDS) publishes high quality international research that presents new ideas and approaches in the derivation, simplification, and validation of models and sub-models of relevance to complex (real-world) dynamical systems. The journal brings together engineers and scientists working in different areas of application and/or theory where researchers can learn about recent developments across engineering, environmental systems, and biotechnology amongst other fields. As MCMDS covers a wide range of application areas, papers aim to be accessible to readers who are not necessarily experts in the specific area of application. MCMDS welcomes original articles on a range of topics including: -methods of modelling and simulation- automation of modelling- qualitative and modular modelling- data-based and learning-based modelling- uncertainties and the effects of modelling errors on system performance- application of modelling to complex real-world systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信