Discreteness and group sparsity aware detection for uplink overloaded MU-MIMO systems

IF 3.2 Q1 Computer Science
Ryo Hayakawa, Ayano Nakai-Kasai, K. Hayashi
{"title":"Discreteness and group sparsity aware detection for uplink overloaded MU-MIMO systems","authors":"Ryo Hayakawa, Ayano Nakai-Kasai, K. Hayashi","doi":"10.1017/ATSIP.2020.19","DOIUrl":null,"url":null,"abstract":"This paper proposes signal detection methods for frequency domain equalization (FDE) based overloaded multiuser multiple input multiple output (MU-MIMO) systems for uplink Internet of things (IoT) environments, where a lot of IoT terminals are served by a base station having less number of antennas than that of IoT terminals. By using the fact that the transmitted signal vector has the discreteness and the group sparsity, we propose a convex discreteness and group sparsity aware (DGS) optimization problem for the signal detection. We provide an optimization algorithm for the DGS optimization on the basis of the alternating direction method of multipliers (ADMM). Moreover, we extend the DGS optimization into weighted DGS (W-DGS) optimization and propose an iterative approach named iterative weighted DGS (IW-DGS), where we iteratively solve the W-DGS optimization problem with the update of the parameters in the objective function. We also discuss the computational complexity of the proposed IW-DGS and show that we can reduce the order of the complexity by using the structure of the channel matrix. Simulation results show that the symbol error rate (SER) performance of the proposed method is close to that of the oracle zero forcing (ZF) method, which perfectly knows the activity of each IoT terminal.","PeriodicalId":44812,"journal":{"name":"APSIPA Transactions on Signal and Information Processing","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/ATSIP.2020.19","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APSIPA Transactions on Signal and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/ATSIP.2020.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes signal detection methods for frequency domain equalization (FDE) based overloaded multiuser multiple input multiple output (MU-MIMO) systems for uplink Internet of things (IoT) environments, where a lot of IoT terminals are served by a base station having less number of antennas than that of IoT terminals. By using the fact that the transmitted signal vector has the discreteness and the group sparsity, we propose a convex discreteness and group sparsity aware (DGS) optimization problem for the signal detection. We provide an optimization algorithm for the DGS optimization on the basis of the alternating direction method of multipliers (ADMM). Moreover, we extend the DGS optimization into weighted DGS (W-DGS) optimization and propose an iterative approach named iterative weighted DGS (IW-DGS), where we iteratively solve the W-DGS optimization problem with the update of the parameters in the objective function. We also discuss the computational complexity of the proposed IW-DGS and show that we can reduce the order of the complexity by using the structure of the channel matrix. Simulation results show that the symbol error rate (SER) performance of the proposed method is close to that of the oracle zero forcing (ZF) method, which perfectly knows the activity of each IoT terminal.
上行链路过载MU-MIMO系统的离散性和组稀疏性检测
本文提出了基于频域均衡(FDE)的过载多用户多输入多输出(MU-MIMO)系统的信号检测方法,用于上行物联网(IoT)环境,其中大量物联网终端由天线数量少于物联网终端的基站服务。利用传输信号矢量的离散性和群稀疏性,提出了一种凸离散性和群稀疏性感知的信号检测优化问题。提出了一种基于乘法器交替方向法(ADMM)的DGS优化算法。此外,我们将DGS优化扩展为加权DGS (W-DGS)优化,并提出了一种迭代加权DGS (IW-DGS)方法,通过更新目标函数中的参数来迭代求解W-DGS优化问题。我们还讨论了所提出的IW-DGS的计算复杂度,并表明我们可以通过使用信道矩阵的结构来降低复杂度的阶数。仿真结果表明,该方法的符号错误率(SER)性能接近于oracle零强制(ZF)方法,可以很好地了解每个物联网终端的活动情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
APSIPA Transactions on Signal and Information Processing
APSIPA Transactions on Signal and Information Processing ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
8.60
自引率
6.20%
发文量
30
审稿时长
40 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信