Numerical characterization of complex torus quotients

IF 1.1 3区 数学 Q1 MATHEMATICS
B. Claudon, Patrick Graf, Henri Guenancia
{"title":"Numerical characterization of complex torus quotients","authors":"B. Claudon, Patrick Graf, Henri Guenancia","doi":"10.4171/cmh/543","DOIUrl":null,"url":null,"abstract":". This article gives a characterization of quotients of complex tori by finite groups acting freely in codimension two in terms of a numerical vanishing condition on the first and second Chern class. This generalizes results previously obtained by Greb–Kebekus–Peternell in the projective setting, and by Kirschner and the second author in dimension three. As a key ingredient to the proof, we obtain a version of the Bogomolov–Gieseker inequality for stable sheaves on singular spaces, including a discussion of the case of equality.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/543","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

. This article gives a characterization of quotients of complex tori by finite groups acting freely in codimension two in terms of a numerical vanishing condition on the first and second Chern class. This generalizes results previously obtained by Greb–Kebekus–Peternell in the projective setting, and by Kirschner and the second author in dimension three. As a key ingredient to the proof, we obtain a version of the Bogomolov–Gieseker inequality for stable sheaves on singular spaces, including a discussion of the case of equality.
复环面商的数值表征
本文根据第一和第二Chern类上的数值消失条件,给出了在余维2中自由作用的有限群的复复复曲面商的特征。这推广了Greb–Kebekus–Peternell之前在射影环境中获得的结果,以及Kirschner和第二作者在三维中获得的结论。作为证明的一个关键因素,我们得到了奇异空间上稳定槽轮的Bogomolov–Gieseker不等式的一个版本,包括对等式情况的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信