{"title":"Scalable sub-cycle pulse generation by soliton self-compression in hollow capillary fibers with a decreasing pressure gradient","authors":"Marina Fernández Galán","doi":"10.1051/jeos/2023011","DOIUrl":null,"url":null,"abstract":"Advances in the generation of the shortest optical laser pulses down to the sub-cycle regime promise to break new ground in ultrafast science. In this work, we theoretically demonstrate the potential scaling capabilities of soliton self-compression in hollow capillary fibers with a decreasing pressure gradient to generate near-infrared sub-cycle pulses in very different dispersion and nonlinearity landscapes. Independently of input pulse, gas and fiber choices, we present a simple and general route to find the optimal self-compression parameters which result in high-quality pulses. The use of a decreasing pressure gradient naturally favors the self-compression process, resulting in shorter and cleaner sub-cycle pulses, and an improvement in the robustness of the setup when compared to the traditional constant pressure approach.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/jeos/2023011","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1
Abstract
Advances in the generation of the shortest optical laser pulses down to the sub-cycle regime promise to break new ground in ultrafast science. In this work, we theoretically demonstrate the potential scaling capabilities of soliton self-compression in hollow capillary fibers with a decreasing pressure gradient to generate near-infrared sub-cycle pulses in very different dispersion and nonlinearity landscapes. Independently of input pulse, gas and fiber choices, we present a simple and general route to find the optimal self-compression parameters which result in high-quality pulses. The use of a decreasing pressure gradient naturally favors the self-compression process, resulting in shorter and cleaner sub-cycle pulses, and an improvement in the robustness of the setup when compared to the traditional constant pressure approach.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.