A study on the big data scientific research model and the key mechanism based on blockchain

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shen Wen
{"title":"A study on the big data scientific research model and the key mechanism based on blockchain","authors":"Shen Wen","doi":"10.1515/comp-2022-0258","DOIUrl":null,"url":null,"abstract":"Abstract In an era of open data sharing, the scientific research field puts forward an urgent need for the value of big data. However, big data still form “data islands,” which seriously affects the level of scientific research and the progress of scientific research. In this regard, this article proposes the research and realization of the big data scientific research model and key mechanism based on blockchain. This article uses the K-means algorithm to cluster scientific research data and reasonably utilizes the decentralization, smart contracts, and non-tampering characteristics of the blockchain to design a distributed data model based on the blockchain. This article proposes that a BIZi network is formed based on a blockchain Interplanetary File System (IPFS) and Zigzag code (blockchain, IPF Sand Zigzag code, BIZi for short) to achieve reliable data connection and through a set of data access control mechanisms and data service customization mechanism to effectively provide data requirements for scientific research. Finally, IPFS network transmission speed performance can better meet the needs of scientific research. The larger the number of file blocks, the higher the fault tolerance rate of the scheme and the better the storage efficiency. In a completely open data-sharing scenario, the fault tolerance rate of Byzantine nodes is extremely high to ensure the stability of the blockchain. The current optimal consensus algorithm fault tolerance rate reaches 49%.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2022-0258","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In an era of open data sharing, the scientific research field puts forward an urgent need for the value of big data. However, big data still form “data islands,” which seriously affects the level of scientific research and the progress of scientific research. In this regard, this article proposes the research and realization of the big data scientific research model and key mechanism based on blockchain. This article uses the K-means algorithm to cluster scientific research data and reasonably utilizes the decentralization, smart contracts, and non-tampering characteristics of the blockchain to design a distributed data model based on the blockchain. This article proposes that a BIZi network is formed based on a blockchain Interplanetary File System (IPFS) and Zigzag code (blockchain, IPF Sand Zigzag code, BIZi for short) to achieve reliable data connection and through a set of data access control mechanisms and data service customization mechanism to effectively provide data requirements for scientific research. Finally, IPFS network transmission speed performance can better meet the needs of scientific research. The larger the number of file blocks, the higher the fault tolerance rate of the scheme and the better the storage efficiency. In a completely open data-sharing scenario, the fault tolerance rate of Byzantine nodes is extremely high to ensure the stability of the blockchain. The current optimal consensus algorithm fault tolerance rate reaches 49%.
基于b区块链的大数据科研模式及关键机制研究
在数据开放共享的时代,科研领域对大数据的价值提出了迫切的需求。但是,大数据仍然形成了“数据孤岛”,严重影响了科研水平和科研进程。对此,本文提出了基于区块链的大数据科研模式和关键机制的研究与实现。本文采用K-means算法对科研数据进行聚类,合理利用区块链的去中心化、智能合约、不可篡改等特性,设计基于区块链的分布式数据模型。本文提出基于区块链星际文件系统(IPFS)和Zigzag码(区块链,IPF Sand Zigzag码,简称BIZi)组成BIZi网络,实现可靠的数据连接,并通过一套数据访问控制机制和数据服务定制机制,有效地为科研提供数据需求。最后,IPFS网络传输速度性能能更好地满足科研需要。文件块数量越大,该方案的容错率越高,存储效率越高。在完全开放的数据共享场景下,拜占庭节点的容错率极高,保证了区块链的稳定性。目前最优共识算法容错率达到49%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信