{"title":"Moderate deviations inequalities for Gaussian process regression","authors":"Jialin Li, I. Ryzhov","doi":"10.1017/jpr.2023.30","DOIUrl":null,"url":null,"abstract":"\n Gaussian process regression is widely used to model an unknown function on a continuous domain by interpolating a discrete set of observed design points. We develop a theoretical framework for proving new moderate deviations inequalities on different types of error probabilities that arise in GP regression. Two specific examples of broad interest are the probability of falsely ordering pairs of points (incorrectly estimating one point as being better than another) and the tail probability of the estimation error at an arbitrary point. Our inequalities connect these probabilities to the mesh norm, which measures how well the design points fill the space.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2023.30","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Gaussian process regression is widely used to model an unknown function on a continuous domain by interpolating a discrete set of observed design points. We develop a theoretical framework for proving new moderate deviations inequalities on different types of error probabilities that arise in GP regression. Two specific examples of broad interest are the probability of falsely ordering pairs of points (incorrectly estimating one point as being better than another) and the tail probability of the estimation error at an arbitrary point. Our inequalities connect these probabilities to the mesh norm, which measures how well the design points fill the space.
期刊介绍:
Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.