A Public Key Cryptosystem Using a Group of Permutation Polynomials

Q4 Mathematics
Rajesh P. Singh, B. K. Sarma, A. Saikia
{"title":"A Public Key Cryptosystem Using a Group of Permutation Polynomials","authors":"Rajesh P. Singh, B. K. Sarma, A. Saikia","doi":"10.2478/tmmp-2020-0013","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we propose an efficient multivariate encryption scheme based on permutation polynomials over finite fields. We single out a commutative group ℒ(q, m) of permutation polynomials over the finite field Fqm. We construct a trapdoor function for the cryptosystem using polynomials in ℒ(2, m), where m =2k for some k ≥ 0. The complexity of encryption in our public key cryptosystem is O(m3) multiplications which is equivalent to other multivariate public key cryptosystems. For decryption only left cyclic shifts, permutation of bits and xor operations are used. It uses at most 5m2+3m – 4 left cyclic shifts, 5m2 +3m + 4 xor operations and 7 permutations on bits for decryption.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"77 1","pages":"139 - 162"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2020-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract In this paper we propose an efficient multivariate encryption scheme based on permutation polynomials over finite fields. We single out a commutative group ℒ(q, m) of permutation polynomials over the finite field Fqm. We construct a trapdoor function for the cryptosystem using polynomials in ℒ(2, m), where m =2k for some k ≥ 0. The complexity of encryption in our public key cryptosystem is O(m3) multiplications which is equivalent to other multivariate public key cryptosystems. For decryption only left cyclic shifts, permutation of bits and xor operations are used. It uses at most 5m2+3m – 4 left cyclic shifts, 5m2 +3m + 4 xor operations and 7 permutations on bits for decryption.
一组置换多项式的公钥密码系统
摘要本文提出了一种有效的基于有限域上置换多项式的多元加密方案。我们挑出一个可交换群ℒ(q,m)。我们使用中的多项式构造了密码系统的陷门函数ℒ(2,m),其中对于某些k≥0,m=2k。在我们的公钥密码系统中,加密的复杂性是O(m3)乘法,这与其他多元公钥密码系统相当。对于仅左循环移位的解密,使用比特的排列和异或运算。它最多使用5m2+3m–4个左循环移位、5m2+3m+4个异或运算和7个比特排列进行解密。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信