Reproduction operators in solving LABS problem using EMAS meta-heuristic with various local optimization techniques

IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sylwia Biełaszek, Kamil Piętak, Marek Kisiel-Dorohinicki
{"title":"Reproduction operators in solving LABS problem using EMAS meta-heuristic with various local optimization techniques","authors":"Sylwia Biełaszek, Kamil Piętak, Marek Kisiel-Dorohinicki","doi":"10.1080/24751839.2022.2118098","DOIUrl":null,"url":null,"abstract":"ABSTRACT Agent-based evolutionary, computational systems have been proven to be an efficient concept for solving complex computational problems. This paper is an extension of [Biełaszek, S., Piętak, K., & Kisiel-Dorohinicki, M. (2021). New extensions of reproduction operators in solving LABS problem using EMAS meta-heuristic. Springer, cop. 2021. – Lecture Notes in Artificial Intelligence, Computational collective intelligence 12876 304-316. 13th International Conference, ICCCI 2021: Rhodes, Greece, September 29ŰOctober 1, 2021.] where we proposed new variants of reproduction operators together with new heuristics for the generation of initial population, dedicated to LABS – a hard discrete optimization problem. In this research, we verify if the proposed recombination operators improve EMAS efficiency also with different local optimization techniques such as Tabu Search and Self-avoiding walk, and therefore can be seen as better recombination operators dedicated to LABS problem in general. This paper recalls the definition of new recombination variants dedicated to LABS and verify if they can be successfully used in many different evolutionary configurations.","PeriodicalId":32180,"journal":{"name":"Journal of Information and Telecommunication","volume":"7 1","pages":"29 - 43"},"PeriodicalIF":2.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24751839.2022.2118098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Agent-based evolutionary, computational systems have been proven to be an efficient concept for solving complex computational problems. This paper is an extension of [Biełaszek, S., Piętak, K., & Kisiel-Dorohinicki, M. (2021). New extensions of reproduction operators in solving LABS problem using EMAS meta-heuristic. Springer, cop. 2021. – Lecture Notes in Artificial Intelligence, Computational collective intelligence 12876 304-316. 13th International Conference, ICCCI 2021: Rhodes, Greece, September 29ŰOctober 1, 2021.] where we proposed new variants of reproduction operators together with new heuristics for the generation of initial population, dedicated to LABS – a hard discrete optimization problem. In this research, we verify if the proposed recombination operators improve EMAS efficiency also with different local optimization techniques such as Tabu Search and Self-avoiding walk, and therefore can be seen as better recombination operators dedicated to LABS problem in general. This paper recalls the definition of new recombination variants dedicated to LABS and verify if they can be successfully used in many different evolutionary configurations.
使用EMAS元启发式和各种局部优化技术解决LABS问题的再现算子
摘要:基于Agent的进化计算系统已被证明是解决复杂计算问题的有效概念。本文是[Beełaszek,S.,PiÉtak,K.,&Kisiel Dorohinicki,M.(2021)的扩展。使用EMAS元启发式求解LABS问题中的再现算子的新扩展。Springer,cop.2021-人工智能讲义,计算集体智能12876 304-316。第13届国际会议,ICCCI 2021:希腊罗兹,2021年9月29日Ű10月1日。]在会上,我们提出了繁殖算子的新变体,以及用于生成初始种群的新启发式方法,专门研究LABS——一个硬离散优化问题。在本研究中,我们验证了所提出的重组算子是否也通过不同的局部优化技术(如禁忌搜索和自回避行走)提高了EMAS的效率,因此可以被视为专门用于LABS问题的更好的重组算子。本文回顾了专门用于LABS的新重组变体的定义,并验证了它们是否可以成功地用于许多不同的进化配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
18
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信