Reconstructing the Oxygen Depth Profile in the Arabian Sea During the Last Glacial Period

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Wanyi Lu, K. Costa, D. Oppo
{"title":"Reconstructing the Oxygen Depth Profile in the Arabian Sea During the Last Glacial Period","authors":"Wanyi Lu, K. Costa, D. Oppo","doi":"10.1029/2023PA004632","DOIUrl":null,"url":null,"abstract":"Reconstructing the strength and depth boundary of oxygen minimum zones (OMZs) in the glacial ocean advances our understanding of how OMZs respond to climate changes. While many efforts have inferred better oxygenation of the glacial Arabian Sea OMZ from qualitative indices, oxygenation and vertical extent of the glacial OMZ is not well quantified. Here we present glacial‐Holocene oxygen reconstructions in a depth transect of Arabian Sea cores ranging from 600 to 3,650 m water depths. We estimate glacial oxygen concentrations using benthic foraminiferal surface porosity and benthic carbon isotope gradient reconstructions. Compared to the modern Arabian Sea, glacial oxygen concentrations were approximately 10–15 μmol/kg higher in the shallow OMZ (<1,000 m), and 5–80 μmol/kg lower at greater depths (1,500–3,650 m). Our results suggest that the OMZ in the glacial Arabian Sea was slightly better oxygenated but remained in the upper 1,000 m. We propose that the small increase in oxygenation of the Arabian Sea OMZ during the last glacial period was due to weaker upper ocean stratification induced by stronger winter monsoon winds coupled with an increase in oxygen solubility due to lower temperatures, counteracting the effects of more oxygen consumption resulting from higher primary productivity. Large‐scale changes in ocean circulation may have also contributed to better ventilation of the glacial Arabian Sea OMZ.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023PA004632","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Reconstructing the strength and depth boundary of oxygen minimum zones (OMZs) in the glacial ocean advances our understanding of how OMZs respond to climate changes. While many efforts have inferred better oxygenation of the glacial Arabian Sea OMZ from qualitative indices, oxygenation and vertical extent of the glacial OMZ is not well quantified. Here we present glacial‐Holocene oxygen reconstructions in a depth transect of Arabian Sea cores ranging from 600 to 3,650 m water depths. We estimate glacial oxygen concentrations using benthic foraminiferal surface porosity and benthic carbon isotope gradient reconstructions. Compared to the modern Arabian Sea, glacial oxygen concentrations were approximately 10–15 μmol/kg higher in the shallow OMZ (<1,000 m), and 5–80 μmol/kg lower at greater depths (1,500–3,650 m). Our results suggest that the OMZ in the glacial Arabian Sea was slightly better oxygenated but remained in the upper 1,000 m. We propose that the small increase in oxygenation of the Arabian Sea OMZ during the last glacial period was due to weaker upper ocean stratification induced by stronger winter monsoon winds coupled with an increase in oxygen solubility due to lower temperatures, counteracting the effects of more oxygen consumption resulting from higher primary productivity. Large‐scale changes in ocean circulation may have also contributed to better ventilation of the glacial Arabian Sea OMZ.
末次冰期阿拉伯海氧深剖面的重建
重建冰川海洋中氧最低带(OMZ)的强度和深度边界,加深了我们对OMZ如何应对气候变化的理解。虽然许多研究已经从定性指标中推断出阿拉伯海冰川OMZ的氧合性更好,但冰质OMZ的氧化作用和垂直范围并没有很好地量化。在这里,我们展示了在600至3650米水深的阿拉伯海岩芯深度剖面中的冰川-全新世氧气重建。我们使用海底有孔虫表面孔隙度和海底碳同位素梯度重建来估计冰川氧浓度。与现代阿拉伯海相比,浅层OMZ(<1000 m)的冰川氧浓度高出约10–15μmol/kg,更深处(1500–3650 m)的冰氧浓度低出约5–80μmol/kg。我们的研究结果表明,阿拉伯海冰川期的OMZ含氧量略好,但仍保持在1000m以上,抵消了由更高的初级生产力导致的更多氧气消耗的影响。海洋环流的大规模变化也可能有助于冰川阿拉伯海OMZ的更好通风。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Paleoceanography and Paleoclimatology
Paleoceanography and Paleoclimatology Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.20
自引率
11.40%
发文量
107
期刊介绍: Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信