D. Margaretta, N. Amalia, F. Utami, R. Murniati, S. Viridi, M. Abdullah
{"title":"Size-dependent electron chemical potential in nanostructures derived from statistical configuration","authors":"D. Margaretta, N. Amalia, F. Utami, R. Murniati, S. Viridi, M. Abdullah","doi":"10.3906/fiz-1907-27","DOIUrl":null,"url":null,"abstract":"We rederived the fermion distribution function by considering the effect of assembly size. We did not use Stirling approximation to avoid the deviation generated by this approximation for a small number of constituents and small assembly size. Furthermore, we identified that in small systems, the chemical potential should also depend on the assembly size. We also rederived a general expression for the size-dependent chemical potential from a statistical configuration and showed that it is consistent with the results from previously reported theoretical or simulation methods. Finally, we applied the model to derive a size-dependent thermoelectric power factor of nanostructured materials. One important finding is that the power factor initially increases when reducing the particle size; however, it then reduces to approach zero when further reducing the material size, due to a dramatic change in the material behaviors.","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3906/fiz-1907-27","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3906/fiz-1907-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We rederived the fermion distribution function by considering the effect of assembly size. We did not use Stirling approximation to avoid the deviation generated by this approximation for a small number of constituents and small assembly size. Furthermore, we identified that in small systems, the chemical potential should also depend on the assembly size. We also rederived a general expression for the size-dependent chemical potential from a statistical configuration and showed that it is consistent with the results from previously reported theoretical or simulation methods. Finally, we applied the model to derive a size-dependent thermoelectric power factor of nanostructured materials. One important finding is that the power factor initially increases when reducing the particle size; however, it then reduces to approach zero when further reducing the material size, due to a dramatic change in the material behaviors.
期刊介绍:
The Turkish Journal of Physics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language manuscripts in various fields of research in physics, astrophysics, and interdisciplinary topics related to physics. Contribution is open to researchers of all nationalities.