Global regularity for Oldroyd-B model with only stress tensor dissipation

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Weixun Feng, Zhi Chen, Dongdong Qin, Xianhua Tang
{"title":"Global regularity for Oldroyd-B model with only stress tensor dissipation","authors":"Weixun Feng, Zhi Chen, Dongdong Qin, Xianhua Tang","doi":"10.3233/asy-231861","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the d-dimensional ( d ⩾ 2) Oldroyd-B model with only dissipation in the equation of stress tensor, and establish a small data global well-posedness result in critical L p framework. Particularly, we give a positive answer to the problem proposed recently by Wu-Zhao (J. Differ. Equ. 316 (2022)) involving the upper bound for the time integral of the lower frequency piece of the stress tensor, and show that it is indeed independent of the time. Moreover, we improve the results in (J. Math. Fluid Mech. 24 (2022)) by relaxing the space dimension d = 2 , 3 to any d ⩾ 2.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231861","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the d-dimensional ( d ⩾ 2) Oldroyd-B model with only dissipation in the equation of stress tensor, and establish a small data global well-posedness result in critical L p framework. Particularly, we give a positive answer to the problem proposed recently by Wu-Zhao (J. Differ. Equ. 316 (2022)) involving the upper bound for the time integral of the lower frequency piece of the stress tensor, and show that it is indeed independent of the time. Moreover, we improve the results in (J. Math. Fluid Mech. 24 (2022)) by relaxing the space dimension d = 2 , 3 to any d ⩾ 2.
仅考虑应力张量耗散的oldyd - b模型的全局正则性
在本文中,我们考虑在应力张量方程中仅具有耗散的d维(d小于2)oldyd - b模型,并在关键L p框架中建立小数据全局适定性结果。特别是,我们对吴钊(J. Differ)最近提出的问题给出了积极的回答。方程316(2022))涉及应力张量的低频块的时间积分的上界,并表明它确实与时间无关。此外,我们改进了(J. Math)的结果。Fluid Mech. 24(2022))通过将空间维度d = 2,3放松到任何d或2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信