The construction of the integral for the arc length of a curve based on van Heuraet and Fermat’s works

IF 0.6 Q3 MATHEMATICS
Jesús Eduardo Hinojos-Ramos, Diana del Carmen Torres-Corrales, Alberto Camacho-Ríos
{"title":"The construction of the integral for the arc length of a curve based on van Heuraet and Fermat’s works","authors":"Jesús Eduardo Hinojos-Ramos, Diana del Carmen Torres-Corrales, Alberto Camacho-Ríos","doi":"10.1080/26375451.2023.2168880","DOIUrl":null,"url":null,"abstract":"We present the research outcomes of a project in Mathematics Education about the design and implementation of an instrument to learn the integral for the arc length of a function by using differential elements as the strategy for its construction. The research was done via a didactic intervention in a regular Integral Calculus course. The instrument was designed based on historical-epistemological analyses of the works of van Heuraet and Fermat. The main result of this research was that students achieve a more robust conceptualization of the integral for the arc length, supported by its construction with differential elements and its geometric foundation.","PeriodicalId":36683,"journal":{"name":"British Journal for the History of Mathematics","volume":"38 1","pages":"41 - 54"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal for the History of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/26375451.2023.2168880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present the research outcomes of a project in Mathematics Education about the design and implementation of an instrument to learn the integral for the arc length of a function by using differential elements as the strategy for its construction. The research was done via a didactic intervention in a regular Integral Calculus course. The instrument was designed based on historical-epistemological analyses of the works of van Heuraet and Fermat. The main result of this research was that students achieve a more robust conceptualization of the integral for the arc length, supported by its construction with differential elements and its geometric foundation.
在范启艾和费马的基础上构造曲线弧长积分
我们介绍了数学教育中一个项目的研究成果,该项目涉及一种工具的设计和实现,该工具通过使用微分元素作为构建函数弧长的策略来学习函数弧长积分。这项研究是通过对常规微积分课程的教学干预来完成的。该仪器是基于对范·豪雷特和费尔马特作品的历史认识论分析而设计的。这项研究的主要结果是,学生们在用微分元素构造积分及其几何基础的支持下,对弧长积分实现了更有力的概念化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
British Journal for the History of Mathematics
British Journal for the History of Mathematics Arts and Humanities-History and Philosophy of Science
CiteScore
0.50
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信