Index theory on the Miščenko bundle

IF 0.5 4区 数学 Q3 MATHEMATICS
Jens Kaad, Valerio Proietti
{"title":"Index theory on the Miščenko bundle","authors":"Jens Kaad, Valerio Proietti","doi":"10.1215/21562261-2021-0021","DOIUrl":null,"url":null,"abstract":". We consider the assembly map for principal bundles with fiber a countable discrete group. We obtain an index-theoretic interpretation of this homomorphism by providing a tensor-product presentation for the module of sections associated to the Miščenko line bundle. In addition, we give a proof of Atiyah’s L 2 -index theorem in the general context of flat bundles of finitely generated projective Hilbert C ∗ -modules over compact Hausdorff spaces. We thereby also reestablish that the surjectivity of the Baum-Connes assembly map implies the Kadison-Kaplansky idempotent conjecture in the torsion-free case. Our approach does not rely on geometric K -homology but rather on an explicit construction of Alexander-Spanier cohomology classes coming from a Chern character for tracial function algebras.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2021-0021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

. We consider the assembly map for principal bundles with fiber a countable discrete group. We obtain an index-theoretic interpretation of this homomorphism by providing a tensor-product presentation for the module of sections associated to the Miščenko line bundle. In addition, we give a proof of Atiyah’s L 2 -index theorem in the general context of flat bundles of finitely generated projective Hilbert C ∗ -modules over compact Hausdorff spaces. We thereby also reestablish that the surjectivity of the Baum-Connes assembly map implies the Kadison-Kaplansky idempotent conjecture in the torsion-free case. Our approach does not rely on geometric K -homology but rather on an explicit construction of Alexander-Spanier cohomology classes coming from a Chern character for tracial function algebras.
Miščenko束的指数理论
.我们考虑具有可数离散群的主丛的装配映射。我们通过提供与Miščenko线丛相关的截面模的张量积表示,获得了这种同态的指数论解释。此外,我们在紧致Hausdor ff空间上的有限生成投影Hilbert C*-模的fleat丛的一般上下文中,给出了Atiyah的L2指数定理的一个证明。因此,我们还重新建立了Baum-Connes装配图的满射性暗示了无扭情形下的Kadison-Kaplansky幂等猜想。我们的方法不依赖于几何K-同调,而是依赖于来自迹函数代数的Chern特征的Alexander Spanier上同调类的显式构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信