{"title":"Avaliando aprendizado de máquina na previsão de curto prazo de séries temporais de energia solar","authors":"Naylene Fraccanabbia, V. Mariani","doi":"10.5335/rbca.v13i2.12581","DOIUrl":null,"url":null,"abstract":"Fontes alternativas de energia estão se tornando cada vez mais frequentes, tendo como objetivo reduzir a poluição ambiental, além de serem ideais para superar a crise energética, logo, neste contexto, a energia solar se destaca por ser abundante. Devido ao alto nível de incerteza dos fatores que interferem diretamente na geração de energia solar, como temperatura e radiação solar, realizar previsões de energia solar com alta precisão é um desafio. Assim, o objetivo deste artigo é desenvolver um modelo de previsão por meio de séries temporais que possibilite prever a produção de energia solar, para 1, 3 e 6 passos à frente, enfatizando a potencialidade da rede neural, utilizando um banco de dados de uma usina fotovoltaica localizada no Uruguai. Para o desenvolvimento da proposta, técnicas de pré-processamento e os métodos de previsão regressão de vetores de suporte (Support Vector Regression, SVR), rede neural perceptron multicamadas com regularização bayesiana (Bayesian Regularized Neural Network, BRNN) e modelo linear generalizado (Generalized Linear Model, GLM) foram combinados. Por fim, tais combinações foram comparadas usando medidas de desempenho. Notou-se que a combinação da análise de componentes principais (Principal Components Analysis - PCA) e a Rede Neural Perceptron Multicamadas com Regularização Bayesiana obteve os melhores resultados, utilizando as três medidas de desempenho.","PeriodicalId":41711,"journal":{"name":"Revista Brasileira de Computacao Aplicada","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Computacao Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5335/rbca.v13i2.12581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Fontes alternativas de energia estão se tornando cada vez mais frequentes, tendo como objetivo reduzir a poluição ambiental, além de serem ideais para superar a crise energética, logo, neste contexto, a energia solar se destaca por ser abundante. Devido ao alto nível de incerteza dos fatores que interferem diretamente na geração de energia solar, como temperatura e radiação solar, realizar previsões de energia solar com alta precisão é um desafio. Assim, o objetivo deste artigo é desenvolver um modelo de previsão por meio de séries temporais que possibilite prever a produção de energia solar, para 1, 3 e 6 passos à frente, enfatizando a potencialidade da rede neural, utilizando um banco de dados de uma usina fotovoltaica localizada no Uruguai. Para o desenvolvimento da proposta, técnicas de pré-processamento e os métodos de previsão regressão de vetores de suporte (Support Vector Regression, SVR), rede neural perceptron multicamadas com regularização bayesiana (Bayesian Regularized Neural Network, BRNN) e modelo linear generalizado (Generalized Linear Model, GLM) foram combinados. Por fim, tais combinações foram comparadas usando medidas de desempenho. Notou-se que a combinação da análise de componentes principais (Principal Components Analysis - PCA) e a Rede Neural Perceptron Multicamadas com Regularização Bayesiana obteve os melhores resultados, utilizando as três medidas de desempenho.