Nonlinear Biodynamic Models of the Hand-arm System and Parameters Identification using the Vibration Transmissibility or the Driving-point Mechanical Impedance

Q4 Chemical Engineering
Nahid Hida, Mohamed Abid, F. Lakrad
{"title":"Nonlinear Biodynamic Models of the Hand-arm System and Parameters Identification using the Vibration Transmissibility or the Driving-point Mechanical Impedance","authors":"Nahid Hida, Mohamed Abid, F. Lakrad","doi":"10.22055/JACM.2021.35508.2672","DOIUrl":null,"url":null,"abstract":"This study aims at deriving nonlinear expressions of the transmissibility and the driving-point mechanical impedance (DPMI) of two nonlinear biodynamic hand-arm models having active restoring and dissipative parameters. It aims also in computing explicitly the non-directly measurable stiffness and damping coefficients of the human hand-arm system (HAS). Multivariate Pade approximants are used to express the dependence of the HAS mechanical properties on various influencing factors. The harmonic balance method is used to derive analytical expressions of the transmissibility and the DPMI. Then, the models parameters are identified by minimizing constrained error functions between the theoretical DPMI or transmissibility and the measured data. The developed workflow is applied to three experimental data sets of Z-direction vibrations where the excitation frequency and/or the grip force are varied. Using the ISO-10068 (2012) limit DPMI values versus the excitation frequency, we derived upper and lower limits of the overall stiffness coefficient and damping ratio for the human HAS. Furthermore, the model reproduces with high accuracy experimental measurements of the transmissibility, the DPMI and the vibration power absorption.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22055/JACM.2021.35508.2672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

This study aims at deriving nonlinear expressions of the transmissibility and the driving-point mechanical impedance (DPMI) of two nonlinear biodynamic hand-arm models having active restoring and dissipative parameters. It aims also in computing explicitly the non-directly measurable stiffness and damping coefficients of the human hand-arm system (HAS). Multivariate Pade approximants are used to express the dependence of the HAS mechanical properties on various influencing factors. The harmonic balance method is used to derive analytical expressions of the transmissibility and the DPMI. Then, the models parameters are identified by minimizing constrained error functions between the theoretical DPMI or transmissibility and the measured data. The developed workflow is applied to three experimental data sets of Z-direction vibrations where the excitation frequency and/or the grip force are varied. Using the ISO-10068 (2012) limit DPMI values versus the excitation frequency, we derived upper and lower limits of the overall stiffness coefficient and damping ratio for the human HAS. Furthermore, the model reproduces with high accuracy experimental measurements of the transmissibility, the DPMI and the vibration power absorption.
基于振动传递率或驱动点机械阻抗的手臂系统非线性生物动力学模型及参数识别
本文旨在推导两种具有主动恢复和耗散参数的非线性生物动力手臂模型的传递率和驱动点机械阻抗的非线性表达式。它还旨在明确地计算人类手臂系统(HAS)的非直接可测量的刚度和阻尼系数。采用多元Pade近似来表示HAS力学性能对各种影响因素的依赖关系。利用谐波平衡法推导了传输率和DPMI的解析表达式。然后,通过最小化理论DPMI或传输率与实测数据之间的约束误差函数来识别模型参数。开发的工作流程应用于三个z方向振动的实验数据集,其中激励频率和/或握力是不同的。利用ISO-10068(2012)的DPMI值与激励频率的关系,我们推导出了人体HAS的总体刚度系数和阻尼比的上限和下限。此外,该模型还高精度地再现了传递率、DPMI和振动功率吸收的实验测量结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Mechanics
Applied and Computational Mechanics Engineering-Computational Mechanics
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
14 weeks
期刊介绍: The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信