Some New Characterizations of Real Hypersurfaces with Isometric Reeb Flow in Complex Two-Plane Grassmannians

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Dehe Li, Bo Li, Lifen Zhang
{"title":"Some New Characterizations of Real Hypersurfaces with Isometric Reeb Flow in Complex Two-Plane Grassmannians","authors":"Dehe Li, Bo Li, Lifen Zhang","doi":"10.1155/2023/2347915","DOIUrl":null,"url":null,"abstract":"<jats:p>In this note, we establish an integral inequality for compact and orientable real hypersurfaces in complex two-plane Grassmannians <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <msup>\n <mrow>\n <mi>ℂ</mi>\n </mrow>\n <mrow>\n <mi>m</mi>\n <mo>+</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, involving the shape operator <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>A</mi>\n </math>\n </jats:inline-formula> and the Reeb vector field <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>ξ</mi>\n </math>\n </jats:inline-formula>. Moreover, this integral inequality is optimal in the sense that the real hypersurfaces attaining the equality are completely determined. As direct consequences, some new characterizations of the real hypersurfaces in <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <msup>\n <mrow>\n <mi>ℂ</mi>\n </mrow>\n <mrow>\n <mi>m</mi>\n <mo>+</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> with isometric Reeb flow can be presented.</jats:p>","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/2347915","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, we establish an integral inequality for compact and orientable real hypersurfaces in complex two-plane Grassmannians G 2 m + 2 , involving the shape operator A and the Reeb vector field ξ . Moreover, this integral inequality is optimal in the sense that the real hypersurfaces attaining the equality are completely determined. As direct consequences, some new characterizations of the real hypersurfaces in G 2 m + 2 with isometric Reeb flow can be presented.
复杂两平面Grassmannians中等距Reeb流实超曲面的一些新特征
在该注释中,我们在复二平面Grassmannians G2中建立了紧致可定向实超曲面的一个积分不等式ℂ m+2,涉及形状算子A和Reeb向量场ξ。此外,这个积分不等式在达到等式的实超曲面是完全确定的意义上是最优的。作为直接后果,G2中实超曲面的一些新性质ℂ m+2具有等距Reeb流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematical Physics
Advances in Mathematical Physics 数学-应用数学
CiteScore
2.40
自引率
8.30%
发文量
151
审稿时长
>12 weeks
期刊介绍: Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike. As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信