Hausdorffified algebraic K1-groups and invariants for C∗-algebras with the ideal property

IF 0.5 Q3 MATHEMATICS
G. Gong, Chunlan Jiang, Liangqing Li
{"title":"Hausdorffified algebraic K1-groups and\ninvariants for C∗-algebras with the ideal property","authors":"G. Gong, Chunlan Jiang, Liangqing Li","doi":"10.2140/akt.2020.5.43","DOIUrl":null,"url":null,"abstract":"A $C^*$-algebra $A$ is said to have the ideal property if each closed two-sided ideal of $A$ is generated by the projections inside the ideal, as a closed two sided ideal. $C^*$-algebras with the ideal property are generalization and unification of real rank zero $C^*$-algebras and unital simple $C^*$-algebras. It is long to be expected that an invariant (see [Stev] and [Ji-Jiang], [Jiang-Wang] and [Jiang1]) , we call it $Inv^0(A)$ (see the introduction), consisting of scaled ordered total $K$-group $(\\underline{K}(A), \\underline{K}(A)^{+},\\Sigma A)_{\\Lambda}$ (used in the real rank zero case), the tracial state space $T(pAp)$ of cutting down algebra $pAp$ as part of Elliott invariant of $pAp$ (for each $[p]\\in\\Sigma A$) with a certain compatibility, is the complete invariant for certain well behaved class of $C^*$-algebras with the ideal property (e.g., $AH$ algebras with no dimension growth). In this paper, we will construct two non isomorphic $A\\mathbb{T}$ algebras $A$ and $B$ with the ideal property such that $Inv^0(A)\\cong Inv^0(B)$. The invariant to differentiate the two algebras is the Hausdorffifized algebraic $K_1$-groups $U(pAp)/\\overline{DU(pAp)}$ (for each $[p]\\in\\Sigma A$) with a certain compatibility condition. It will be proved in [GJL] that, adding this new ingredients, the invariant will become the complete invariant for $AH$ algebras (of no dimension growth) with the ideal property.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2020.5.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

A $C^*$-algebra $A$ is said to have the ideal property if each closed two-sided ideal of $A$ is generated by the projections inside the ideal, as a closed two sided ideal. $C^*$-algebras with the ideal property are generalization and unification of real rank zero $C^*$-algebras and unital simple $C^*$-algebras. It is long to be expected that an invariant (see [Stev] and [Ji-Jiang], [Jiang-Wang] and [Jiang1]) , we call it $Inv^0(A)$ (see the introduction), consisting of scaled ordered total $K$-group $(\underline{K}(A), \underline{K}(A)^{+},\Sigma A)_{\Lambda}$ (used in the real rank zero case), the tracial state space $T(pAp)$ of cutting down algebra $pAp$ as part of Elliott invariant of $pAp$ (for each $[p]\in\Sigma A$) with a certain compatibility, is the complete invariant for certain well behaved class of $C^*$-algebras with the ideal property (e.g., $AH$ algebras with no dimension growth). In this paper, we will construct two non isomorphic $A\mathbb{T}$ algebras $A$ and $B$ with the ideal property such that $Inv^0(A)\cong Inv^0(B)$. The invariant to differentiate the two algebras is the Hausdorffifized algebraic $K_1$-groups $U(pAp)/\overline{DU(pAp)}$ (for each $[p]\in\Sigma A$) with a certain compatibility condition. It will be proved in [GJL] that, adding this new ingredients, the invariant will become the complete invariant for $AH$ algebras (of no dimension growth) with the ideal property.
具有理想性质的C*-代数的Hausdorfified代数K1群及其变型
如果$A$的每个闭双侧理想都是由理想内部的投影生成的,则称$C^*$代数$A$具有理想性质,作为闭双侧理想$具有理想性质的C^*$-代数是实秩零$C^*$-代数和单单位$C^**$-代数的推广和统一。很长一段时间以来,人们一直期望一个不变量(见[Stev]和[JiJiJiJiang],[JiJiangWang]和[Jiang1]),我们称之为$Inv^0(A)$(见引言),由按比例排序的总$K$-组$(\underline{K}(A),\underline{K}(A)^{+},\Sigma A)_{\Lambda}$(用于真实秩为零的情况),切割代数$pAp$的轨迹状态空间$T(pAp)$作为具有一定相容性的$pAp$的Elliott不变量的一部分(对于每个$[p]\in\Sigma A$),是具有理想性质的某些表现良好的$C^*$-代数类(如无维增长的$AH$代数)的完全不变量。本文构造了两个具有理想性质的非同构$A\mathbb{T}$代数$A$和$B$,使得$Inv^0(A)\cong-Inv^0(B)$。区分两个代数的不变量是具有一定相容条件的Hausdorfified代数$K_1$-群$U(pAp)/\overline{DU(p)}$(对于每个$[p]\in\ Sigma A$)。在[GJL]中可以证明,添加这些新的成分,不变量将成为具有理想性质的$AH$代数(无维增长)的完全不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信