Ill-posedness of Inverse Diffusion Problems by Jacobi's Theta Transform

IF 0.8 4区 数学
F. B. Belgacem
{"title":"Ill-posedness of Inverse Diffusion Problems by Jacobi's Theta Transform","authors":"F. B. Belgacem","doi":"10.4208/JMS.V51N2.18.01","DOIUrl":null,"url":null,"abstract":"The subject is the ill-posedness degree of some inverse problems for the transient heat conduction. We focus on three of them: the completion of missing boundary data, the identification of the trajectory of a pointwise source and the recovery of the initial state. In all of these problems, the observations provide over-specified boundary data, commonly called Cauchy boundary conditions. Notice that the third problem is central for the controllability by a boundary control of the temperature. Presumably, they are all severely ill-posed, a relevant indicator on their instabilities, as formalized by G. Wahba. We revisit these issues under a new light and with different mathematical tools to provide detailed and complete proofs for these results. Jacobi Theta functions, complemented with the Jacobi Imaginary Transform, turn out to be a powerful tool to realize our objectives. In particular, based on the Laptev work [Matematicheskie Zametki 16, 741-750 (1974)], we provide a new information about the observation of the initial data problem. It is actually exponentially ill-posed. AMS subject classifications: MASC 65N20, 65F22","PeriodicalId":43526,"journal":{"name":"数学研究","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/JMS.V51N2.18.01","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The subject is the ill-posedness degree of some inverse problems for the transient heat conduction. We focus on three of them: the completion of missing boundary data, the identification of the trajectory of a pointwise source and the recovery of the initial state. In all of these problems, the observations provide over-specified boundary data, commonly called Cauchy boundary conditions. Notice that the third problem is central for the controllability by a boundary control of the temperature. Presumably, they are all severely ill-posed, a relevant indicator on their instabilities, as formalized by G. Wahba. We revisit these issues under a new light and with different mathematical tools to provide detailed and complete proofs for these results. Jacobi Theta functions, complemented with the Jacobi Imaginary Transform, turn out to be a powerful tool to realize our objectives. In particular, based on the Laptev work [Matematicheskie Zametki 16, 741-750 (1974)], we provide a new information about the observation of the initial data problem. It is actually exponentially ill-posed. AMS subject classifications: MASC 65N20, 65F22
用Jacobi变换求解逆扩散问题的病态性
研究了一些瞬态热传导反问题的不适定性程度。我们重点关注其中三个:缺失边界数据的完成、逐点源轨迹的识别和初始状态的恢复。在所有这些问题中,观测提供了超过指定的边界数据,通常称为柯西边界条件。注意,第三个问题是通过温度的边界控制的可控性的中心。据推测,他们都严重不适,这是G.Wahba正式表示他们不稳定的一个相关指标。我们以新的视角和不同的数学工具重新审视这些问题,为这些结果提供详细和完整的证明。Jacobi-Theta函数,加上Jacobi Imaginary Transform,是实现我们目标的强大工具。特别是,基于Laptev的工作[Matematicheskie Zametki 16741-750(1974)],我们提供了关于初始数据问题观测的新信息。它实际上是指数级的病态。AMS受试者分类:MASC 65N20、65F22
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
数学研究
数学研究 MATHEMATICS-
自引率
0.00%
发文量
1109
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信