M. Fila, Petra Mackov'a, J. Takahashi, E. Yanagida
{"title":"Anisotropic and isotropic persistent singularities of solutions of the fast diffusion equation","authors":"M. Fila, Petra Mackov'a, J. Takahashi, E. Yanagida","doi":"10.57262/die035-1112-729","DOIUrl":null,"url":null,"abstract":"Abstract. The aim of this paper is to study a class of positive solutions of the fast diffusion equation with specific persistent singular behavior. First, we construct new types of solutions with anisotropic singularities. Depending on parameters, either these solutions solve the original equation in the distributional sense, or they are not locally integrable in space-time. We show that the latter also holds for solutions with snaking singularities, whose existence has been proved recently by M. Fila, J.R. King, J. Takahashi, and E. Yanagida. Moreover, we establish that in the distributional sense, isotropic solutions whose existence was proved by M. Fila, J. Takahashi, and E. Yanagida in 2019, actually solve the corresponding problem with a moving Dirac source term. Last, we discuss the existence of solutions with anisotropic singularities in a critical case.","PeriodicalId":50581,"journal":{"name":"Differential and Integral Equations","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential and Integral Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die035-1112-729","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract. The aim of this paper is to study a class of positive solutions of the fast diffusion equation with specific persistent singular behavior. First, we construct new types of solutions with anisotropic singularities. Depending on parameters, either these solutions solve the original equation in the distributional sense, or they are not locally integrable in space-time. We show that the latter also holds for solutions with snaking singularities, whose existence has been proved recently by M. Fila, J.R. King, J. Takahashi, and E. Yanagida. Moreover, we establish that in the distributional sense, isotropic solutions whose existence was proved by M. Fila, J. Takahashi, and E. Yanagida in 2019, actually solve the corresponding problem with a moving Dirac source term. Last, we discuss the existence of solutions with anisotropic singularities in a critical case.
期刊介绍:
Differential and Integral Equations will publish carefully selected research papers on mathematical aspects of differential and integral equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new, and of interest to a substantial number of mathematicians working in these areas.