{"title":"Activity induced non-monotonic aggregation in a mixture of chemically active and passive particles","authors":"Manisha Jhajhria, S. Sahoo, T. Biswas, S. Thakur","doi":"10.1080/1539445X.2023.2206087","DOIUrl":null,"url":null,"abstract":"ABSTRACT Spontaneous symmetry breaking has been shown to be the genesis of self-assembly in a mixture of spherically symmetric chemically active and passive colloids, forming dense clusters. Here, we study the kinetics of such self-assembly, driven by the phoretic motion of passive colloids following the chemical gradient generated by the active seeds. A non-monotonic effect of activity on aggregation is the key observation in this work. We rationalize such non-monotonicity in the clustering by the hybrid coarse-grained simulations. The average cluster population and the variation of their size as a function of time, the stability of clusters, and their dynamics are the key quantifications that help us comprehend the aggregation.","PeriodicalId":22140,"journal":{"name":"Soft Materials","volume":"21 1","pages":"237 - 250"},"PeriodicalIF":1.6000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/1539445X.2023.2206087","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Spontaneous symmetry breaking has been shown to be the genesis of self-assembly in a mixture of spherically symmetric chemically active and passive colloids, forming dense clusters. Here, we study the kinetics of such self-assembly, driven by the phoretic motion of passive colloids following the chemical gradient generated by the active seeds. A non-monotonic effect of activity on aggregation is the key observation in this work. We rationalize such non-monotonicity in the clustering by the hybrid coarse-grained simulations. The average cluster population and the variation of their size as a function of time, the stability of clusters, and their dynamics are the key quantifications that help us comprehend the aggregation.
期刊介绍:
Providing a common forum for all soft matter scientists, Soft Materials covers theory, simulation, and experimental research in this rapidly expanding and interdisciplinary field. As soft materials are often at the heart of modern technologies, soft matter science has implications and applications in many areas ranging from biology to engineering.
Unlike many journals which focus primarily on individual classes of materials or particular applications, Soft Materials draw on all physical, chemical, materials science, and biological aspects of soft matter. Featured topics include polymers, biomacromolecules, colloids, membranes, Langmuir-Blodgett films, liquid crystals, granular matter, soft interfaces, complex fluids, surfactants, gels, nanomaterials, self-organization, supramolecular science, molecular recognition, soft glasses, amphiphiles, foams, and active matter.
Truly international in scope, Soft Materials contains original research, invited reviews, in-depth technical tutorials, and book reviews.