One-dimensional Fourier series of a function of many variables

IF 0.3 Q4 MATHEMATICS
Omar Dzagnidze
{"title":"One-dimensional Fourier series of a function of many variables","authors":"Omar Dzagnidze","doi":"10.1016/j.trmi.2017.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>It is well known that to each summable in the <span><math><mi>n</mi></math></span>-dimensional cube <span><math><msup><mrow><mrow><mo>[</mo><mo>−</mo><mi>π</mi><mo>,</mo><mi>π</mi><mo>]</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></math></span> function <span><math><mi>f</mi></math></span> of variables <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> there corresponds one <span><math><mi>n</mi></math></span>-multiple trigonometric Fourier series <span><math><mi>S</mi><mrow><mo>[</mo><mi>f</mi><mo>]</mo></mrow></math></span> with constant coefficients.</p><p>In the present paper, with the function <span><math><mi>f</mi></math></span> we associate <span><math><mi>n</mi></math></span> one-dimensional Fourier series <span><math><mi>S</mi><msub><mrow><mrow><mo>[</mo><mi>f</mi><mo>]</mo></mrow></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><mi>S</mi><msub><mrow><mrow><mo>[</mo><mi>f</mi><mo>]</mo></mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span>, with respect to variables <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, respectively, with nonconstant coefficients and announce the preliminary results. In particular, if a continuous function <span><math><mi>f</mi></math></span> is differentiable at some point <span><math><mi>x</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></math></span>, then all one-dimensional Fourier series <span><math><mi>S</mi><msub><mrow><mrow><mo>[</mo><mi>f</mi><mo>]</mo></mrow></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><mi>S</mi><msub><mrow><mrow><mo>[</mo><mi>f</mi><mo>]</mo></mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span> converge at <span><math><mi>x</mi></math></span> to the value <span><math><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math></span>.</p><p>For illustration we consider the well known example of Ch. Fefferman’s function <span><math><mi>F</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></math></span> whose double trigonometric Fourier series <span><math><mi>S</mi><mrow><mo>[</mo><mi>F</mi><mo>]</mo></mrow></math></span> diverges everywhere in the sense of Prinsheim. Namely, we establish the simultaneous convergence of the one-dimensional Fourier series <span><math><mi>S</mi><msub><mrow><mrow><mo>[</mo><mi>F</mi><mo>]</mo></mrow></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mi>S</mi><msub><mrow><mrow><mo>[</mo><mi>F</mi><mo>]</mo></mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> at almost all points <span><math><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mrow><mo>[</mo><mo>−</mo><mi>π</mi><mo>,</mo><mi>π</mi><mo>]</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> to the values <span><math><mi>F</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></math></span>.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"171 2","pages":"Pages 167-170"},"PeriodicalIF":0.3000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2017.03.001","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809216301350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

It is well known that to each summable in the n-dimensional cube [π,π]n function f of variables x1,,xn there corresponds one n-multiple trigonometric Fourier series S[f] with constant coefficients.

In the present paper, with the function f we associate n one-dimensional Fourier series S[f]1,,S[f]n, with respect to variables x1,,xn, respectively, with nonconstant coefficients and announce the preliminary results. In particular, if a continuous function f is differentiable at some point x=(x1,,xn), then all one-dimensional Fourier series S[f]1,,S[f]n converge at x to the value f(x).

For illustration we consider the well known example of Ch. Fefferman’s function F(x,y) whose double trigonometric Fourier series S[F] diverges everywhere in the sense of Prinsheim. Namely, we establish the simultaneous convergence of the one-dimensional Fourier series S[F]1 and S[F]2 at almost all points (x,y)[π,π]2 to the values F(x,y).

多变量函数的一维傅里叶级数
众所周知,对于变量x1,…,xn的n维立方[−π,π]n函数f中的每一个可和函数,都对应一个常系数的n倍三角傅立叶级数S[f]。本文利用函数f,分别将n个关于变量x1,…,xn的一维傅里叶级数S[f]1,…,S[f]n与非常系数联系起来,并公布了初步结果。特别地,如果连续函数f在某点x=(x1,…,xn)处可微,则所有一维傅里叶级数S[f]1,…,S[f]n在x处收敛于f(x)。为了说明,我们考虑著名的费费曼函数F(x,y)的例子,它的二重三角傅立叶级数S[F]在Prinsheim意义上处处发散。也就是说,我们建立了一维傅里叶级数S[F]1和S[F]2在几乎所有点(x,y)∈[−π,π]2到值F(x,y)的同时收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信