James Cesar Avisado Refran, T. Ohba, C. Arcilla, T. Hoshide, M. Balangue-Tarriela
{"title":"Deep crustal crystallization of tholeiitic melt: Insights from Manguao Basalt, Palawan, Philippines","authors":"James Cesar Avisado Refran, T. Ohba, C. Arcilla, T. Hoshide, M. Balangue-Tarriela","doi":"10.2465/jmps.191211","DOIUrl":null,"url":null,"abstract":"Manguao Basalt is a Plio–Pleistocene basaltic lava flow located on the northeastern edge of Palawan Island, Philippines. The absence of active trenches surrounding the Palawan Continental Block (PCB) poses a challenge regarding the nature and origin of magmatism in the region. This study presents the petrographic and geochemical character of Manguao Basalt, as well as provides insights to the melt formation beneath the PCB. Manguao Basalt samples are olivine–phyric with minor pyroxenes, set in a plagioclase–dominated microcrystalline groundmass. Average bulk–rock major element composition of Manguao Basalt shows similarities to common olivine basalt tholeiite. Petrographic observations of the phenocrysts, however, show the unusual precedence of pyroxenes in the crystallization sequence. Calculated formation temperatures and pressures of the modal assemblage are consistent with this idea of early pyroxene formation. Simulations of mantle melting using the MELTS program show the formation of pyroxene–saturated primitive liquids. The evolution of these primitive liquids reaches similarities with Manguao Basalt composition at 1230–1260 °C. Simulations of equilibrium and fractional crystallization demonstrate the formation of olivine or orthopyroxene as the first crystals. However, the simulations done at equilibrium conditions are more consistent with the observed mineral chemistry of pyroxene phenocrysts in Manguao Basalt. Hence, maintaining the equilibrium between the source and melt is crucial for replicating the observed pyroxene chemistry. Magmatic underplating provides an excellent model for visualizing the melting and crystallization processes beneath the PCB. The model is also consistent with the narrative of other magmatic units in northern Palawan (e.g., Capoas Granite). The significant findings of this study contribute to the understanding of the tectonic evolution of the PCB.","PeriodicalId":51093,"journal":{"name":"Journal of Mineralogical and Petrological Sciences","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mineralogical and Petrological Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2465/jmps.191211","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MINERALOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Manguao Basalt is a Plio–Pleistocene basaltic lava flow located on the northeastern edge of Palawan Island, Philippines. The absence of active trenches surrounding the Palawan Continental Block (PCB) poses a challenge regarding the nature and origin of magmatism in the region. This study presents the petrographic and geochemical character of Manguao Basalt, as well as provides insights to the melt formation beneath the PCB. Manguao Basalt samples are olivine–phyric with minor pyroxenes, set in a plagioclase–dominated microcrystalline groundmass. Average bulk–rock major element composition of Manguao Basalt shows similarities to common olivine basalt tholeiite. Petrographic observations of the phenocrysts, however, show the unusual precedence of pyroxenes in the crystallization sequence. Calculated formation temperatures and pressures of the modal assemblage are consistent with this idea of early pyroxene formation. Simulations of mantle melting using the MELTS program show the formation of pyroxene–saturated primitive liquids. The evolution of these primitive liquids reaches similarities with Manguao Basalt composition at 1230–1260 °C. Simulations of equilibrium and fractional crystallization demonstrate the formation of olivine or orthopyroxene as the first crystals. However, the simulations done at equilibrium conditions are more consistent with the observed mineral chemistry of pyroxene phenocrysts in Manguao Basalt. Hence, maintaining the equilibrium between the source and melt is crucial for replicating the observed pyroxene chemistry. Magmatic underplating provides an excellent model for visualizing the melting and crystallization processes beneath the PCB. The model is also consistent with the narrative of other magmatic units in northern Palawan (e.g., Capoas Granite). The significant findings of this study contribute to the understanding of the tectonic evolution of the PCB.
期刊介绍:
The Journal of Mineralogical and Petrological Sciences (JMPS) publishes original articles, reviews and letters in the fields of mineralogy, petrology, economic geology, geochemistry, planetary materials science, and related scientific fields. As an international journal, we aim to provide worldwide diffusion for the results of research in Japan, as well as to serve as a medium with high impact factor for the global scientific communication
Given the remarkable rate at which publications have been expanding to include several fields, including planetary and earth sciences, materials science, and instrumental analysis technology, the journal aims to encourage and develop a variety of such new interdisciplinary scientific fields, to encourage the wide scope of such new fields to bloom in the future, and to contribute to the rapidly growing international scientific community.
To cope with this emerging scientific environment, in April 2000 the journal''s two parent societies, MSJ* (The Mineralogical Society of Japan) and JAMPEG* (The Japanese Association of Mineralogists, Petrologists and Economic Geologists), combined their respective journals (the Mineralogical Journal and the Journal of Mineralogy, Petrology and Economic Geology). The result of this merger was the Journal of Mineralogical and Petrological Sciences, which has a greatly expanded and enriched scope compared to its predecessors.