Uniqueness for a system of Monge–Ampère equations

IF 0.6 Q4 MATHEMATICS, APPLIED
N. Le
{"title":"Uniqueness for a system of Monge–Ampère equations","authors":"N. Le","doi":"10.4310/maa.2021.v28.n1.a2","DOIUrl":null,"url":null,"abstract":"In this note, we prove a uniqueness result, up to a positive multiplicative constant, for nontrivial convex solutions to a system of Monge-Amp\\`ere equations \\begin{equation*} \\left\\{ \\begin{alignedat}{2} \\det D^2 u~& = \\gamma |v|^p~&&\\text{in} ~ \\Omega, \\\\\\ \\det D^2 v~& = \\mu |u|^{n^2/p}~&&\\text{in} ~ \\Omega, \\\\\\ u=v &= 0~&&\\text{on}~ \\partial\\Omega \\end{alignedat} \\right. \\end{equation*} on bounded, smooth and uniformly convex domains $\\Omega\\subset R^n$ provided that $p$ is close to $n\\geq 2$. When $p=n$, we show that the uniqueness holds for general bounded convex domains $\\Omega\\subset R^n$.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/maa.2021.v28.n1.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

In this note, we prove a uniqueness result, up to a positive multiplicative constant, for nontrivial convex solutions to a system of Monge-Amp\`ere equations \begin{equation*} \left\{ \begin{alignedat}{2} \det D^2 u~& = \gamma |v|^p~&&\text{in} ~ \Omega, \\\ \det D^2 v~& = \mu |u|^{n^2/p}~&&\text{in} ~ \Omega, \\\ u=v &= 0~&&\text{on}~ \partial\Omega \end{alignedat} \right. \end{equation*} on bounded, smooth and uniformly convex domains $\Omega\subset R^n$ provided that $p$ is close to $n\geq 2$. When $p=n$, we show that the uniqueness holds for general bounded convex domains $\Omega\subset R^n$.
Monge–Ampère方程组的唯一性
在本文中,我们证明了Monge-Amp方程组的非平凡凸解的一个唯一性结果,直到一个正乘性常数,begin{equation*}\left{begin{alignedat}{2}\det D^2 u~&=\gamma|v|^p~&&\text{In}~\Omega,\\\\det D^2v~&=\ mu|u|^{n^2/p}~&&\text{In}~\ Omega,\\u=v&=0}\对。\在有界光滑一致凸域$\Omega\subet R^n$上的end{方程*},条件是$p$接近$n\geq2$。当$p=n$时,我们证明了一般有界凸域$\Omega\子集R^n$的唯一性成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信