T. B. Abay, K. Fossum, D. Karlsen, H. Dypvik, Lars Jonas Jørgensen Narvhus, M. Haid, W. Hudson
{"title":"Petroleum geochemical aspects of the Mandawa Basin, coastal Tanzania: the origin of migrated oil occurring today as partly biodegraded bitumen","authors":"T. B. Abay, K. Fossum, D. Karlsen, H. Dypvik, Lars Jonas Jørgensen Narvhus, M. Haid, W. Hudson","doi":"10.1144/petgeo2019-050","DOIUrl":null,"url":null,"abstract":"The shallow-marine Upper Jurassic–Lower Cretaceous sedimentary successions of the Mandawa Basin, coastal Tanzania, are located about 80 km away from the offshore gas discoveries of Block 2, Tanzania. In this paper we present petroleum geochemical data, including bitumen extracted from outcrop samples which are relevant to the understanding of the onshore ‘Petroleum System’ and possibly also to the offshore basin. Despite some biodegradation and weathering, common to all outcrop samples, most bitumen samples analysed contain mature migrated oil. The maturity span of geomarkers (C13–C15 range) covers the entire oil and condensate/wet gas window (Rc = 0.7–2% Rc, where Rc is the calculated vitrinite reflectance), with the biomarkers generally indicating the oil window (Rc = 0.7–1.3% Rc). This suggests that the bitumen extracts represent several phases of migrated oil and condensate, which shows that the samples are part of an active or recently active migration regime or ‘Petroleum System’. The source-rock facies inferred for the bitumen is Type II/III kerogen of siliciclastic to carbonate facies. This is oil-prone kerogen, typical for a marine depositional system with an influx of proximal-derived terrigenous material blended in with in situ marine algal organic matter (OM). Application of age-specific biomarkers such as the C28/C29-steranes, extended tricyclic terpane ratio (ETR), nordiacholestanes and the aromatic steroids suggest that more than one source rock have contributed to the bitumen. Possible ages are limited to the Mesozoic (i.e. excluding the Late Paleozoic), with the most likely source rock belonging to the Early Jurassic. More geochemical and geological studies should be undertaken to further develop the general understanding of the petroleum system of the Mandawa Basin and its implications to the ‘Petroleum Systems’ both offshore and onshore. This paper also presents a reinterpretation of published gas composition and isotope data on the Pande, Temane and Inhassoro gas fields (Mozambique) with implications for possible oil discoveries in the gas-dominated region.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1144/petgeo2019-050","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2019-050","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
The shallow-marine Upper Jurassic–Lower Cretaceous sedimentary successions of the Mandawa Basin, coastal Tanzania, are located about 80 km away from the offshore gas discoveries of Block 2, Tanzania. In this paper we present petroleum geochemical data, including bitumen extracted from outcrop samples which are relevant to the understanding of the onshore ‘Petroleum System’ and possibly also to the offshore basin. Despite some biodegradation and weathering, common to all outcrop samples, most bitumen samples analysed contain mature migrated oil. The maturity span of geomarkers (C13–C15 range) covers the entire oil and condensate/wet gas window (Rc = 0.7–2% Rc, where Rc is the calculated vitrinite reflectance), with the biomarkers generally indicating the oil window (Rc = 0.7–1.3% Rc). This suggests that the bitumen extracts represent several phases of migrated oil and condensate, which shows that the samples are part of an active or recently active migration regime or ‘Petroleum System’. The source-rock facies inferred for the bitumen is Type II/III kerogen of siliciclastic to carbonate facies. This is oil-prone kerogen, typical for a marine depositional system with an influx of proximal-derived terrigenous material blended in with in situ marine algal organic matter (OM). Application of age-specific biomarkers such as the C28/C29-steranes, extended tricyclic terpane ratio (ETR), nordiacholestanes and the aromatic steroids suggest that more than one source rock have contributed to the bitumen. Possible ages are limited to the Mesozoic (i.e. excluding the Late Paleozoic), with the most likely source rock belonging to the Early Jurassic. More geochemical and geological studies should be undertaken to further develop the general understanding of the petroleum system of the Mandawa Basin and its implications to the ‘Petroleum Systems’ both offshore and onshore. This paper also presents a reinterpretation of published gas composition and isotope data on the Pande, Temane and Inhassoro gas fields (Mozambique) with implications for possible oil discoveries in the gas-dominated region.
期刊介绍:
Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE).
Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.
Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.