Estimación de la evapotranspiración del cultivo de arroz en Perú mediante el algoritmo METRIC e imágenes VANT

IF 0.4 Q4 REMOTE SENSING
Javier A. Quille-Mamani, Lia Ramos-Fernandez, R. Ontiveros-Capurata
{"title":"Estimación de la evapotranspiración del cultivo de arroz en Perú mediante el algoritmo METRIC e imágenes VANT","authors":"Javier A. Quille-Mamani, Lia Ramos-Fernandez, R. Ontiveros-Capurata","doi":"10.4995/RAET.2021.13699","DOIUrl":null,"url":null,"abstract":"Modern remote measurement techniques using cameras mounted on an unmanned aerial vehicle (UAV) have made possible to acquire high-resolution images and estimating evapotranspiration at more detailed spatial and temporal scales. The objective of the present research was to estimate crop evapotranspiration (ETc) of rice crop using the “mapping evapotranspiration with internalized calibration model (METRIC)” using high spatial resolution multispectral and thermal images obtained from a UAV. A total of 18 flights with UAV were performed to get the images; likewise, data were collected from the weather station and thermocouple information installed in the crop canopy under soil water potential conditions of –10 kPa (T1), –15 kPa (T2), –20 kPa (T3) and a control of 0 kPa (T0), from November 13, 2017, to April 30, 2018. The results indicate that the METRIC model compared to ETc measurements recorded by a field drainage lysimeter presents a Pearson correlation coefficient (r) of 0.97, root mean square error (RMSE) of 0.51 mm d–1, Nash-Sutcliffe coefficient (EF) of 0.87 and underestimation of 7 %. Evapotranspiration reached values of 7.48 mm d–1, with differences between treatments of 0.2 %, 6 % and 8 % concerning to T0 and yield reduction of 9 %, 34 % and 35 % for T1, T2 and T3 soil water potential. The high[1]resolution images allowed obtaining detailed information on the spatial variability of ETc that could be used in the more efficient application of plot irrigation.","PeriodicalId":43626,"journal":{"name":"Revista de Teledeteccion","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Teledeteccion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/RAET.2021.13699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Modern remote measurement techniques using cameras mounted on an unmanned aerial vehicle (UAV) have made possible to acquire high-resolution images and estimating evapotranspiration at more detailed spatial and temporal scales. The objective of the present research was to estimate crop evapotranspiration (ETc) of rice crop using the “mapping evapotranspiration with internalized calibration model (METRIC)” using high spatial resolution multispectral and thermal images obtained from a UAV. A total of 18 flights with UAV were performed to get the images; likewise, data were collected from the weather station and thermocouple information installed in the crop canopy under soil water potential conditions of –10 kPa (T1), –15 kPa (T2), –20 kPa (T3) and a control of 0 kPa (T0), from November 13, 2017, to April 30, 2018. The results indicate that the METRIC model compared to ETc measurements recorded by a field drainage lysimeter presents a Pearson correlation coefficient (r) of 0.97, root mean square error (RMSE) of 0.51 mm d–1, Nash-Sutcliffe coefficient (EF) of 0.87 and underestimation of 7 %. Evapotranspiration reached values of 7.48 mm d–1, with differences between treatments of 0.2 %, 6 % and 8 % concerning to T0 and yield reduction of 9 %, 34 % and 35 % for T1, T2 and T3 soil water potential. The high[1]resolution images allowed obtaining detailed information on the spatial variability of ETc that could be used in the more efficient application of plot irrigation.
利用度量算法和无人机图像估算秘鲁水稻作物的蒸散量
使用安装在无人机上的相机的现代遥感技术已经使获取高分辨率图像和在更详细的空间和时间尺度上估计蒸散成为可能。本研究的目的是使用无人机获得的高空间分辨率多光谱和热图像,使用“内部校准模型绘制蒸散量图(METRIC)”来估计水稻作物的作物蒸散量(ETc)。共进行了18次无人机飞行以获取图像;同样,从2017年11月13日至2018年4月30日,在–10 kPa(T1)、–15 kPa(T2)、–20 kPa(T3)和0 kPa(T0)的土壤水势条件下,从气象站和安装在作物冠层中的热电偶信息中收集数据。结果表明,与现场排水蒸渗仪记录的ETc测量值相比,METRIC模型的Pearson相关系数(r)为0.97,均方根误差(RMSE)为0.51mm d–1,Nash-Sutcliffe系数(EF)为0.87,低估值为7 %. 蒸发蒸腾量达到7.48毫米 d–1,处理之间的差异为0.2 %, 6. % 和8 % 关于T0和减产9 %, 34 % 和35 % T1、T2和T3土壤水势。高[1]分辨率图像允许获得关于ETc空间变异性的详细信息,这些信息可用于更有效的小区灌溉应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista de Teledeteccion
Revista de Teledeteccion REMOTE SENSING-
CiteScore
1.80
自引率
14.30%
发文量
11
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信