Linear subspaces of minimal codimension in hypersurfaces

Pub Date : 2021-07-16 DOI:10.4310/mrl.2023.v30.n1.a7
D. Kazhdan, A. Polishchuk
{"title":"Linear subspaces of minimal codimension in hypersurfaces","authors":"D. Kazhdan, A. Polishchuk","doi":"10.4310/mrl.2023.v30.n1.a7","DOIUrl":null,"url":null,"abstract":"Let $k$ be a perfect field and let $X\\subset {\\mathbb P}^N$ be a hypersurface of degree $d$ defined over $k$ and containing a linear subspace $L$ defined over an algebraic closure $\\overline{k}$ with $\\mathrm{codim}_{{\\mathbb P}^N}L=r$. We show that $X$ contains a linear subspace $L_0$ defined over $k$ with $\\mathrm{codim}_{{\\mathbb P}^N}L\\le dr$. We conjecture that the intersection of all linear subspaces (over $\\overline{k}$) of minimal codimension $r$ contained in $X$, has codimension bounded above only in terms of $r$ and $d$. We prove this when either $d\\le 3$ or $r\\le 2$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n1.a7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Let $k$ be a perfect field and let $X\subset {\mathbb P}^N$ be a hypersurface of degree $d$ defined over $k$ and containing a linear subspace $L$ defined over an algebraic closure $\overline{k}$ with $\mathrm{codim}_{{\mathbb P}^N}L=r$. We show that $X$ contains a linear subspace $L_0$ defined over $k$ with $\mathrm{codim}_{{\mathbb P}^N}L\le dr$. We conjecture that the intersection of all linear subspaces (over $\overline{k}$) of minimal codimension $r$ contained in $X$, has codimension bounded above only in terms of $r$ and $d$. We prove this when either $d\le 3$ or $r\le 2$.
分享
查看原文
超曲面中最小余维的线性子空间
设$k$是一个完美域,$X\subset {\mathbb P}^N$是一个在$k$上定义的次为$d$的超曲面,它包含一个在$\mathrm{codim}_{{\mathbb P}^N}L=r$的代数闭包$\overline{k}$上定义的线性子空间$L$。我们证明$X$包含一个用$\mathrm{codim}_{{\mathbb P}^N}L\le dr$在$k$上定义的线性子空间$L_0$。我们推测所有包含在$X$中的最小余维$r$的线性子空间(在$\overline{k}$上)的交集,其余维仅以$r$和$d$有界。我们用$d\le 3$或$r\le 2$证明这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信