{"title":"Linear subspaces of minimal codimension in hypersurfaces","authors":"D. Kazhdan, A. Polishchuk","doi":"10.4310/mrl.2023.v30.n1.a7","DOIUrl":null,"url":null,"abstract":"Let $k$ be a perfect field and let $X\\subset {\\mathbb P}^N$ be a hypersurface of degree $d$ defined over $k$ and containing a linear subspace $L$ defined over an algebraic closure $\\overline{k}$ with $\\mathrm{codim}_{{\\mathbb P}^N}L=r$. We show that $X$ contains a linear subspace $L_0$ defined over $k$ with $\\mathrm{codim}_{{\\mathbb P}^N}L\\le dr$. We conjecture that the intersection of all linear subspaces (over $\\overline{k}$) of minimal codimension $r$ contained in $X$, has codimension bounded above only in terms of $r$ and $d$. We prove this when either $d\\le 3$ or $r\\le 2$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n1.a7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Let $k$ be a perfect field and let $X\subset {\mathbb P}^N$ be a hypersurface of degree $d$ defined over $k$ and containing a linear subspace $L$ defined over an algebraic closure $\overline{k}$ with $\mathrm{codim}_{{\mathbb P}^N}L=r$. We show that $X$ contains a linear subspace $L_0$ defined over $k$ with $\mathrm{codim}_{{\mathbb P}^N}L\le dr$. We conjecture that the intersection of all linear subspaces (over $\overline{k}$) of minimal codimension $r$ contained in $X$, has codimension bounded above only in terms of $r$ and $d$. We prove this when either $d\le 3$ or $r\le 2$.