Upstream Endwall Film-Cooing in a Vane Cascade with Cylindrical Shape Holes

IF 1.1 4区 工程技术 Q4 ENGINEERING, MECHANICAL
B. B. Huyssen, A. S. Shote, G. I. Mahmood
{"title":"Upstream Endwall Film-Cooing in a Vane Cascade with Cylindrical Shape Holes","authors":"B. B. Huyssen, A. S. Shote, G. I. Mahmood","doi":"10.2514/1.t6607","DOIUrl":null,"url":null,"abstract":"To overcome the disadvantages of cylindrical holes in film cooling, complex geometries of the fan-shaped diffused holes are employed in cascade investigations. The present experiment employs a new design of a diffused hole for film cooling that is formed by diffusing a cylindrical hole smoothly and only in the forward direction. The aerothermal performances in a linear vane cascade are compared between an array of simple cylindrical holes and an array of diffused-cylindrical holes by employing them in the cascade upstream endwall. The objectives are to increase the aerothermal performance of the cylindrical holes in the gas-turbine passage film cooling. The measurements of the temperature, velocity, flow angle, and total-pressure losses are obtained at the inlet Reynolds number of [Formula: see text], as well as the coolant-to-mainstream density ratio of 1.0 and temperature ratios between 0.94 and 1.0. Four inlet blowing ratios of film-cooling flow are tested. The results show less coolant migration into the boundary layer and passage vortex for the diffused holes than for the cylindrical holes. The passage vortex becomes weaker, and the overall total-pressure losses at the passage exit are lower for the diffused holes. The local and average adiabatic film-cooling effectivenesses along the endwall are always higher for the diffused holes.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6607","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

To overcome the disadvantages of cylindrical holes in film cooling, complex geometries of the fan-shaped diffused holes are employed in cascade investigations. The present experiment employs a new design of a diffused hole for film cooling that is formed by diffusing a cylindrical hole smoothly and only in the forward direction. The aerothermal performances in a linear vane cascade are compared between an array of simple cylindrical holes and an array of diffused-cylindrical holes by employing them in the cascade upstream endwall. The objectives are to increase the aerothermal performance of the cylindrical holes in the gas-turbine passage film cooling. The measurements of the temperature, velocity, flow angle, and total-pressure losses are obtained at the inlet Reynolds number of [Formula: see text], as well as the coolant-to-mainstream density ratio of 1.0 and temperature ratios between 0.94 and 1.0. Four inlet blowing ratios of film-cooling flow are tested. The results show less coolant migration into the boundary layer and passage vortex for the diffused holes than for the cylindrical holes. The passage vortex becomes weaker, and the overall total-pressure losses at the passage exit are lower for the diffused holes. The local and average adiabatic film-cooling effectivenesses along the endwall are always higher for the diffused holes.
圆柱孔叶片叶栅上游端壁膜曲现象
为了克服圆柱形孔在膜冷却中的缺点,在级联研究中采用了复杂几何形状的扇形扩散孔。本实验采用了一种用于膜冷却的扩散孔的新设计,该扩散孔是通过仅在正向方向上平滑地扩散圆柱形孔而形成的。通过在叶栅上游端壁中采用简单圆柱孔阵列和扩散圆柱孔阵列,比较了线性叶片叶栅中的气动热性能。目的是提高燃气轮机通道膜冷却中圆柱形孔的气动热性能。温度、速度、流量角和总压力损失的测量值是在[公式:见正文]的入口雷诺数、1.0的冷却剂与主流密度比和0.94至1.0之间的温度比下获得的。测试了薄膜冷却流的四种入口吹风比。结果表明,与圆柱形孔相比,扩散孔的冷却剂迁移到边界层和通道涡流较少。通道涡流变弱,对于扩散孔,通道出口处的总压力损失较低。对于扩散孔,沿端壁的局部和平均绝热膜冷却效率总是较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Thermophysics and Heat Transfer
Journal of Thermophysics and Heat Transfer 工程技术-工程:机械
CiteScore
3.50
自引率
19.00%
发文量
95
审稿时长
3 months
期刊介绍: This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信