Thermo-economic feasibility analysis of trilateral-cycle power generators for waste heat recovery-to-power applications

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
H. A. Ajimotokan, Isiaka Ayuba, H. K. Ibrahim
{"title":"Thermo-economic feasibility analysis of trilateral-cycle power generators for waste heat recovery-to-power applications","authors":"H. A. Ajimotokan, Isiaka Ayuba, H. K. Ibrahim","doi":"10.18186/thermal.1198852","DOIUrl":null,"url":null,"abstract":"The trilateral cycle (TLC), a promising alternative waste heat recovery-to-power cycle, is receiving increasing attention due to feats such as the high thermal match between the exergy of the heat source temperature profiles and its working fluid. Although the TLC has neither been broadly applied nor commercialised because of its thermo-economic feasibility considerations. This study examined the thermo-economic analysis of different TLC power generator configurations; i.e., the saturated subcritical simple (non-recuperative) and recuperative cycles using n-pentane as the working fluid for low-grade waste heat recovery-to-power generation. Based on the thermodynamic and economic analyses, the feasibility analysis models of the cycles were established using Aspen Plus, considering efficiency, cost, and expected operating and capacity factors. Furthermore, the capacity factor, specific investment cost (SIC), and payback period (PBP), among other, were used to evaluate the cycle design configurations and sizes. The SICs of the simple and recuperative TLCs were 3,683.88 $/kW and 4,220.41 $/kW, and their PBPs were 8.43 years and 8.55 years, respectively. The simple TLC had a lower investment ratio of 0.24 compared to an investment ratio of 0.28 for the recuperative TLC. These economic values suggest that the simple TLC is more cost-effective when compared with the recuperative TLC because the recuperation process does not recompense the associated cost, making it unattractive.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1198852","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The trilateral cycle (TLC), a promising alternative waste heat recovery-to-power cycle, is receiving increasing attention due to feats such as the high thermal match between the exergy of the heat source temperature profiles and its working fluid. Although the TLC has neither been broadly applied nor commercialised because of its thermo-economic feasibility considerations. This study examined the thermo-economic analysis of different TLC power generator configurations; i.e., the saturated subcritical simple (non-recuperative) and recuperative cycles using n-pentane as the working fluid for low-grade waste heat recovery-to-power generation. Based on the thermodynamic and economic analyses, the feasibility analysis models of the cycles were established using Aspen Plus, considering efficiency, cost, and expected operating and capacity factors. Furthermore, the capacity factor, specific investment cost (SIC), and payback period (PBP), among other, were used to evaluate the cycle design configurations and sizes. The SICs of the simple and recuperative TLCs were 3,683.88 $/kW and 4,220.41 $/kW, and their PBPs were 8.43 years and 8.55 years, respectively. The simple TLC had a lower investment ratio of 0.24 compared to an investment ratio of 0.28 for the recuperative TLC. These economic values suggest that the simple TLC is more cost-effective when compared with the recuperative TLC because the recuperation process does not recompense the associated cost, making it unattractive.
三边循环发电机余热回收发电的热经济可行性分析
三边循环(TLC)是一种很有前途的替代功率循环的废热回收方式,由于热源温度分布的火用与其工作流体之间的高度热匹配等优点,它正受到越来越多的关注。尽管由于其热经济可行性考虑,TLC既没有得到广泛应用,也没有商业化。本研究考察了不同TLC发电机配置的热经济性分析;即使用正戊烷作为低等级废热回收到发电的工作流体的饱和亚临界简单(非回收)和回收循环。基于热力学和经济分析,使用Aspen Plus建立了循环的可行性分析模型,考虑了效率、成本以及预期运行和容量因素。此外,容量系数、比投资成本(SIC)和回收期(PBP)等被用于评估循环设计配置和规模。简单型和恢复型TLC的SIC分别为3683.88$/kW和4220.41$/kW,其PBP分别为8.43年和8.55年。与回收TLC的0.28的投资比相比,简单TLC具有0.24的较低投资比。这些经济价值表明,与回收的TLC相比,简单的TLC更具成本效益,因为回收过程不会补偿相关成本,使其不具吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信