Bipolar soft ideal rough set with applications in COVID-19

IF 0.8 4区 数学 Q2 MATHEMATICS
H. Mustafa
{"title":"Bipolar soft ideal rough set with applications in COVID-19","authors":"H. Mustafa","doi":"10.55730/1300-0098.3343","DOIUrl":null,"url":null,"abstract":"Bipolar soft rough set represents an important mathematical model to deal with uncertainty. This theory represents a link between bipolar soft set and rough set theories. This study introduced the concept of topological bipolar soft set by combining a bipolar soft set with topologies. Also, the topological structure of bipolar soft rough set has been discussed by defining the bipolar soft rough topology. The main objective of this paper is to present some solutions to develop and modify the approach of the bipolar soft rough sets. Two kinds of bipolar soft ideal approximation operators which represent extensions of bipolar soft rough approximation operator have been presented. Moreover, a new kind of bipolar approximation space via two ideals, called bipolar soft biideal approximation space, was introduced and studied by two different methods. Their properties are discussed and the relationships between these methods and the previous ones are proposed. The importance of these methods is reducing the vagueness of uncertainty areas by increasing the bipolar lower approximations and decreasing the bipolar upper approximations. Also, the bipolar soft biideal rough sets represent two opinions instead of one opinion. Finally, an application in multicriteria group decision making (MCGDM) in COVID-19 by using bipolar soft ideal rough sets is suggested by using two methods. [ FROM AUTHOR]","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.55730/1300-0098.3343","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Bipolar soft rough set represents an important mathematical model to deal with uncertainty. This theory represents a link between bipolar soft set and rough set theories. This study introduced the concept of topological bipolar soft set by combining a bipolar soft set with topologies. Also, the topological structure of bipolar soft rough set has been discussed by defining the bipolar soft rough topology. The main objective of this paper is to present some solutions to develop and modify the approach of the bipolar soft rough sets. Two kinds of bipolar soft ideal approximation operators which represent extensions of bipolar soft rough approximation operator have been presented. Moreover, a new kind of bipolar approximation space via two ideals, called bipolar soft biideal approximation space, was introduced and studied by two different methods. Their properties are discussed and the relationships between these methods and the previous ones are proposed. The importance of these methods is reducing the vagueness of uncertainty areas by increasing the bipolar lower approximations and decreasing the bipolar upper approximations. Also, the bipolar soft biideal rough sets represent two opinions instead of one opinion. Finally, an application in multicriteria group decision making (MCGDM) in COVID-19 by using bipolar soft ideal rough sets is suggested by using two methods. [ FROM AUTHOR]
双极软理想粗糙集在COVID-19中的应用
双极软粗糙集是处理不确定性的重要数学模型。这个理论代表了双极软集和粗糙集理论之间的联系。本文将拓扑双极软集与拓扑相结合,引入了拓扑双极软集的概念。通过定义双极软粗糙拓扑,讨论了双极软粗糙集的拓扑结构。本文的主要目的是提出发展和改进双极软粗糙集方法的一些解决方案。提出了两类双极软理想逼近算子,它们是双极软粗糙逼近算子的扩展。引入了一种新的双极逼近空间,即双极软双理想逼近空间,并采用两种不同的方法进行了研究。讨论了它们的性质,并提出了这些方法与以往方法的关系。这些方法的重要性在于通过增加双极下近似和减少双极上近似来减少不确定区域的模糊性。同时,双极软双理想粗糙集表示两种意见,而不是一种意见。最后,提出了基于双极软理想粗糙集的新型冠状病毒肺炎多准则群决策(MCGDM)的应用。[源自作者]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信