A noncommutative geometric LR rule

IF 0.7 4区 数学
Stephanie van Willigenburg, V. Tewari, Edward Richmond
{"title":"A noncommutative geometric LR rule","authors":"Stephanie van Willigenburg, V. Tewari, Edward Richmond","doi":"10.46298/dmtcs.6367","DOIUrl":null,"url":null,"abstract":"The geometric Littlewood-Richardson (LR) rule is a combinatorial algorithm for computing LR coefficients derived from degenerating the Richardson variety into a union of Schubert varieties in the Grassmannian. Such rules were first given by Vakil and later generalized by Coskun. In this paper we give a noncommutative version of the geometric LR rule. As a consequence, we establish a geometric explanation for the positivity of noncommutative LR coefficients in certain cases.","PeriodicalId":55175,"journal":{"name":"Discrete Mathematics and Theoretical Computer Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Theoretical Computer Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.46298/dmtcs.6367","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The geometric Littlewood-Richardson (LR) rule is a combinatorial algorithm for computing LR coefficients derived from degenerating the Richardson variety into a union of Schubert varieties in the Grassmannian. Such rules were first given by Vakil and later generalized by Coskun. In this paper we give a noncommutative version of the geometric LR rule. As a consequence, we establish a geometric explanation for the positivity of noncommutative LR coefficients in certain cases.
一个非交换几何LR规则
几何Littlewood-Richardson(LR)规则是一种用于计算LR系数的组合算法,该算法是通过将Grassmannian中的Richardson变种退化为舒伯特变种的并集而导出的。这种规则最初由瓦基尔提出,后来由科斯昆推广。本文给出了几何LR规则的一个非交换形式。因此,我们在某些情况下建立了非对易LR系数正性的几何解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
14.30%
发文量
39
期刊介绍: DMTCS is a open access scientic journal that is online since 1998. We are member of the Free Journal Network. Sections of DMTCS Analysis of Algorithms Automata, Logic and Semantics Combinatorics Discrete Algorithms Distributed Computing and Networking Graph Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信