A. Omar, Ziad M. Ali, S. Aleem, E. Abou-El-Zahab, A. Sharaf
{"title":"A Dynamic Switched Compensation Scheme for Grid-Connected Wind Energy Systems Using Cuckoo Search Algorithm","authors":"A. Omar, Ziad M. Ali, S. Aleem, E. Abou-El-Zahab, A. Sharaf","doi":"10.15866/IRECON.V7I2.16895","DOIUrl":null,"url":null,"abstract":"This paper presents a novel stabilization FACTS-based scheme that acts as a switched compensator for grid-connected wind energy systems. It is a member of a family of devices and switched dynamic voltage stabilization converters that were developed to ensure minimal loss of excitation, voltage stabilization, energy efficient utilization, power quality enhancement and harmonic distortion reduction in AC distribution grid networks. A novel-dual action distributed FACTS based–switched power filter compensator (SPFC) scheme is developed for efficient utilization of wind energy under varying wind conditions and major load excursions. A dynamic multi-level error-driven decoupled time de-scaled multi regulation control strategy is used to guarantee better power quality performance in terms of voltage enhancement and stabilization of the AC buses, improvement of power factor, and harmonic distortion reduction. The proposed SPFC was controlled using an inter-coupled weighted modified proportional-integral-derivative (WM-PID) controller. Cuckoo search (CS) optimization algorithm is employed to get the PID controller gains in terms of variations and excursions in wind speed and dynamic load excursions to reflect the performance of the compensator scheme. The effectiveness of the proposed SPFC with the multi-level control strategy has been assessed by time-domain simulations in Matlab/Simulink environment. The results obtained show the robustness of the proposed topology.","PeriodicalId":37583,"journal":{"name":"International Journal on Energy Conversion","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Energy Conversion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/IRECON.V7I2.16895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents a novel stabilization FACTS-based scheme that acts as a switched compensator for grid-connected wind energy systems. It is a member of a family of devices and switched dynamic voltage stabilization converters that were developed to ensure minimal loss of excitation, voltage stabilization, energy efficient utilization, power quality enhancement and harmonic distortion reduction in AC distribution grid networks. A novel-dual action distributed FACTS based–switched power filter compensator (SPFC) scheme is developed for efficient utilization of wind energy under varying wind conditions and major load excursions. A dynamic multi-level error-driven decoupled time de-scaled multi regulation control strategy is used to guarantee better power quality performance in terms of voltage enhancement and stabilization of the AC buses, improvement of power factor, and harmonic distortion reduction. The proposed SPFC was controlled using an inter-coupled weighted modified proportional-integral-derivative (WM-PID) controller. Cuckoo search (CS) optimization algorithm is employed to get the PID controller gains in terms of variations and excursions in wind speed and dynamic load excursions to reflect the performance of the compensator scheme. The effectiveness of the proposed SPFC with the multi-level control strategy has been assessed by time-domain simulations in Matlab/Simulink environment. The results obtained show the robustness of the proposed topology.
期刊介绍:
The International Journal on Energy Conversion (IRECON) is a peer-reviewed journal that publishes original theoretical and applied papers on all aspects regarding energy conversion. It is intended to be a cross disciplinary and internationally journal aimed at disseminating results of research on energy conversion. The topics to be covered include but are not limited to: generation of electrical energy for general industrial, commercial, public, and domestic consumption and electromechanical energy conversion for the use of electrical energy, renewable energy conversion, thermoelectricity, thermionic, photoelectric, thermal-photovoltaic, magneto-hydrodynamic, chemical, Brayton, Diesel, Rankine and combined cycles, and Stirling engines, hydrogen and other advanced fuel cells, all sources forms and storage and uses and all conversion phenomena of energy, static or dynamic conversion systems and processes and energy storage (for example solar, nuclear, fossil, geothermal, wind, hydro, and biomass, process heat, electrolysis, heating and cooling, electrical, mechanical and thermal storage units), energy efficiency and management, sustainable energy, heat pipes and capillary pumped loops, thermal management of spacecraft, space and terrestrial power systems, hydrogen production and storage, nuclear power, single and combined cycles, miniaturized energy conversion and power systems, fuel cells and advanced batteries, industrial, civil, automotive, airspace and naval applications on energy conversion. The Editorial policy is to maintain a reasonable balance between papers regarding different research areas so that the Journal will be useful to all interested scientific groups.