Extraction of Hidden Authentication Factors from Possessive Information

IF 3.3 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Nilobon Nanglae, B. M. Yakubu, P. Bhattarakosol
{"title":"Extraction of Hidden Authentication Factors from Possessive Information","authors":"Nilobon Nanglae, B. M. Yakubu, P. Bhattarakosol","doi":"10.3390/jsan12040062","DOIUrl":null,"url":null,"abstract":"Smartphones have emerged as a ubiquitous personal gadget that serve as a repository for individuals’ significant personal data. Consequently, both physiological and behavioral traits, which are classified as biometric technologies, are used in authentication systems in order to safeguard data saved on smartphones from unauthorized access. Numerous authentication techniques have been developed; however, several authentication variables exhibit instability in the face of external influences or physical impairments. The potential failure of the authentication system might be attributed to several unpredictable circumstances. This research suggests that the use of distinctive and consistent elements over an individual’s lifespan may be employed to develop an authentication classification model. This model would be based on prevalent personal behavioral biometrics and could be readily implemented in security authentication systems. The biological biometrics acquired from an individual’s typing abilities during data entry include their name, surname, email, and phone number. Therefore, it is possible to establish and use a biometrics-based security system that can be sustained and employed during an individual’s lifetime without the explicit dependance on the functionality of the smartphone devices. The experimental findings demonstrate that the use of a mobile touchscreen as the foundation for the proposed verification mechanism has promise as a high-precision authentication solution.","PeriodicalId":37584,"journal":{"name":"Journal of Sensor and Actuator Networks","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensor and Actuator Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan12040062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Smartphones have emerged as a ubiquitous personal gadget that serve as a repository for individuals’ significant personal data. Consequently, both physiological and behavioral traits, which are classified as biometric technologies, are used in authentication systems in order to safeguard data saved on smartphones from unauthorized access. Numerous authentication techniques have been developed; however, several authentication variables exhibit instability in the face of external influences or physical impairments. The potential failure of the authentication system might be attributed to several unpredictable circumstances. This research suggests that the use of distinctive and consistent elements over an individual’s lifespan may be employed to develop an authentication classification model. This model would be based on prevalent personal behavioral biometrics and could be readily implemented in security authentication systems. The biological biometrics acquired from an individual’s typing abilities during data entry include their name, surname, email, and phone number. Therefore, it is possible to establish and use a biometrics-based security system that can be sustained and employed during an individual’s lifetime without the explicit dependance on the functionality of the smartphone devices. The experimental findings demonstrate that the use of a mobile touchscreen as the foundation for the proposed verification mechanism has promise as a high-precision authentication solution.
从占有信息中提取隐藏的认证因素
智能手机已经成为一种无处不在的个人小工具,可以作为个人重要个人数据的存储库。因此,被归类为生物识别技术的生理和行为特征都被用于身份验证系统,以保护保存在智能手机上的数据免受未经授权的访问。已经开发了许多身份验证技术;然而,一些身份验证变量在面对外部影响或身体损伤时表现出不稳定性。身份验证系统的潜在故障可能归因于几种不可预测的情况。这项研究表明,在个人的一生中使用独特和一致的元素可以用来开发身份验证分类模型。该模型将基于流行的个人行为生物特征,并且可以很容易地在安全认证系统中实现。在数据输入过程中,从个人的打字能力中获得的生物生物特征包括他们的姓名、姓氏、电子邮件和电话号码。因此,可以建立和使用一种基于生物特征的安全系统,该系统可以在个人一生中持续使用,而无需明确依赖智能手机设备的功能。实验结果表明,使用移动触摸屏作为所提出的验证机制的基础,有望成为一种高精度的身份验证解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sensor and Actuator Networks
Journal of Sensor and Actuator Networks Physics and Astronomy-Instrumentation
CiteScore
7.90
自引率
2.90%
发文量
70
审稿时长
11 weeks
期刊介绍: Journal of Sensor and Actuator Networks (ISSN 2224-2708) is an international open access journal on the science and technology of sensor and actuator networks. It publishes regular research papers, reviews (including comprehensive reviews on complete sensor and actuator networks), and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信