Examination of the Appropriate Inference Procedure in a Model Structure for Harvest-Based Estimation of Sika Deer Abundance

IF 0.8 4区 生物学 Q3 ZOOLOGY
Mammal Study Pub Date : 2022-12-31 DOI:10.3106/ms2021-0049
M. Ando, Takashi Ikeda, H. Iijima
{"title":"Examination of the Appropriate Inference Procedure in a Model Structure for Harvest-Based Estimation of Sika Deer Abundance","authors":"M. Ando, Takashi Ikeda, H. Iijima","doi":"10.3106/ms2021-0049","DOIUrl":null,"url":null,"abstract":"Abstract. To obtain proper estimates of wildlife abundance by harvest-based models (HBMs), an understanding of the model structure and data properties is required. Otherwise, there may be a risk of failure to obtaining adequate estimates. In this study, we estimated the abundance of sika deer using several spatially fine-scale HBMs with different structures and aimed to clarify the effects of the model structure and data quality on estimates. We used monitoring data collected by the Gifu Prefectural Government and other data collected by the authors. Four HBMs were constructed according to the combinations of the model structure (considering overdispersion in the observation models) and data (with or without additional observation data), and their parameters were estimated. The results showed that among the four HBMs, reasonable deer abundance was estimated by two HBMs in which overdispersion was considered in the observation models of the less precision data only. As the parameters failed to converge in the other two HBMs in which overdispersion was considered in all observation models, the abundance would be overestimated. Thus, our results confirmed that understanding the model structure and data properties was essential for obtaining proper estimates of wildlife abundance from currently available data with HBM. Abstract in Japanese (要旨).ニホンジカ個体数推定のためのHarvest-based modelsにおける適切なモデル設計の検討.Harvest-based models(HBMs)を用いて野生動物の適切な個体数推定値を得るためには,モデルの構造とデータの特性を理解することが必要である.これらに対する理解が不十分な場合,適切な推定値を得られないリスクが大きくなる.本研究では,狩猟メッシュを単位とした空間解像度の高いHBMsを複数構築してニホンジカ個体数の推定を試み,モデル構造とデータの質が個体数推定値に及ぼす影響を明らかにすることを目指した.データとして,岐阜県が収集したモニタリングデータと,筆者らが収集した観測データを用いた.モデル構造(観測モデルにおける過分散の考慮の有無)とデータ(追加観測データの有無)の組み合わせにより,4つのHBMsを構築し個体数推定を試みた.その結果,4つのモデルのうち,精度の低いデータに対する観測モデルのみに過分散を設定した2つのモデルでは妥当なニホンジカ個体数が推定された.一方,すべての観測モデルで過分散を考慮した他の2つのモデルではパラメータは収束せず,また個体数推定値は過大であった.本研究の結果から,ある時点で利用可能なデータからHBMsを用いて野生動物の個体数を適切に推定するためには,モデル構造とデータの特性に対する理解が不可欠であることが確認された.","PeriodicalId":49891,"journal":{"name":"Mammal Study","volume":"48 1","pages":"91 - 108"},"PeriodicalIF":0.8000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammal Study","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3106/ms2021-0049","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. To obtain proper estimates of wildlife abundance by harvest-based models (HBMs), an understanding of the model structure and data properties is required. Otherwise, there may be a risk of failure to obtaining adequate estimates. In this study, we estimated the abundance of sika deer using several spatially fine-scale HBMs with different structures and aimed to clarify the effects of the model structure and data quality on estimates. We used monitoring data collected by the Gifu Prefectural Government and other data collected by the authors. Four HBMs were constructed according to the combinations of the model structure (considering overdispersion in the observation models) and data (with or without additional observation data), and their parameters were estimated. The results showed that among the four HBMs, reasonable deer abundance was estimated by two HBMs in which overdispersion was considered in the observation models of the less precision data only. As the parameters failed to converge in the other two HBMs in which overdispersion was considered in all observation models, the abundance would be overestimated. Thus, our results confirmed that understanding the model structure and data properties was essential for obtaining proper estimates of wildlife abundance from currently available data with HBM. Abstract in Japanese (要旨).ニホンジカ個体数推定のためのHarvest-based modelsにおける適切なモデル設計の検討.Harvest-based models(HBMs)を用いて野生動物の適切な個体数推定値を得るためには,モデルの構造とデータの特性を理解することが必要である.これらに対する理解が不十分な場合,適切な推定値を得られないリスクが大きくなる.本研究では,狩猟メッシュを単位とした空間解像度の高いHBMsを複数構築してニホンジカ個体数の推定を試み,モデル構造とデータの質が個体数推定値に及ぼす影響を明らかにすることを目指した.データとして,岐阜県が収集したモニタリングデータと,筆者らが収集した観測データを用いた.モデル構造(観測モデルにおける過分散の考慮の有無)とデータ(追加観測データの有無)の組み合わせにより,4つのHBMsを構築し個体数推定を試みた.その結果,4つのモデルのうち,精度の低いデータに対する観測モデルのみに過分散を設定した2つのモデルでは妥当なニホンジカ個体数が推定された.一方,すべての観測モデルで過分散を考慮した他の2つのモデルではパラメータは収束せず,また個体数推定値は過大であった.本研究の結果から,ある時点で利用可能なデータからHBMsを用いて野生動物の個体数を適切に推定するためには,モデル構造とデータの特性に対する理解が不可欠であることが確認された.
基于收获的梅花鹿数量估算模型结构中适当推理程序的检验
Abstract。To obtain proper estimates of wildlife abundance by harvest-based models(HBMs),an understanding of the model structure and data properties is required。Otherwise,there may be a risk of failure to obtaining adequate estimates。In this study,we estimated the abundance of sika deer using several spatially fine-scale HBMs with different structures and aimed to clarify the effets of the model structure and data quality on estimates。We used monitoring data collected by the Gifu Prefcural Government and other data collected by the authors。Four HBMs were constructed according to the combinations of the model structure(considering overdispersion in the observation models)and data(with or without additional observation data),and their parameters were estimated。The results showed that among the four HBMs,reasonable deer abundance was estimated by two HBMs in which overdispersion was considered in the observation models of the less precision data only。As the parameters failed to converge in the other two HBMs in which overdispersion was considered in all observation models,the abundance would be overestimated。Thus,our results confirmed that understanding the model structure and data properties was essential for obtaining proper estimates of wildlife abundance from currently available data with HBM。Abstract in Japan ese,在本研究中,通过构建多个以狩猎网格为单位的空间分辨率高的HBMs来尝试估计梅花鹿个体数,模型结构和数据质量对个体数估计值的影响,利用岐阜县收集的监测数据和笔者收集的观测数据。通过模型结构(观测模型中有无考虑过分散)和数据(有无追加观测数据)的组合,构建了4个HBMs,在仅对精度低的数据的观测模型设定过分散的两个模型中,估计了合理的梅花鹿个体数。另一方面,在所有观测模型中考虑过分散的其他两个模型中,参数不收敛,为了从某一时刻可用的数据中使用HBMs恰当地推定野生动物的个体数,确认了对模型结构和数据特性的理解是不可缺少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mammal Study
Mammal Study ZOOLOGY-
CiteScore
1.70
自引率
20.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: Mammal Study is the official journal of the Mammal Society of Japan. It publishes original articles, short communications, and reviews on all aspects of mammalogy quarterly, written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信