On the uniqueness of multi-breathers of the modified Korteweg–de Vries equation

IF 1.3 2区 数学 Q1 MATHEMATICS
A. Semenov
{"title":"On the uniqueness of multi-breathers of the modified Korteweg–de Vries equation","authors":"A. Semenov","doi":"10.4171/rmi/1363","DOIUrl":null,"url":null,"abstract":"A bstract . We consider the modified Korteweg-de Vries equation (mKdV) and prove that given any sum 𝑃 of solitons and breathers of (mKdV) (with distinct velocities), there exists a solution 𝑝 of (mKdV) such that 𝑝 ( 𝑡 ) − 𝑃 ( 𝑡 ) → 0 when 𝑡 → +∞ , which we call multi-breather. In order to do this, we work at the 𝐻 2 level (even if usually solitons are considered at the 𝐻 1 level). We will show that this convergence takes place in any 𝐻 𝑠 space and that this convergence is exponentially fast in time. We also show that the constructed multi-breather is unique in two cases: in the class of solutions which converge to the profile 𝑃 faster than the inverse of a polynomial of a large enough degree in time (we will call this a super polynomial convergence), or (without hypothesis on the convergence rate), when all the velocities are positive.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1363","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

A bstract . We consider the modified Korteweg-de Vries equation (mKdV) and prove that given any sum 𝑃 of solitons and breathers of (mKdV) (with distinct velocities), there exists a solution 𝑝 of (mKdV) such that 𝑝 ( 𝑡 ) − 𝑃 ( 𝑡 ) → 0 when 𝑡 → +∞ , which we call multi-breather. In order to do this, we work at the 𝐻 2 level (even if usually solitons are considered at the 𝐻 1 level). We will show that this convergence takes place in any 𝐻 𝑠 space and that this convergence is exponentially fast in time. We also show that the constructed multi-breather is unique in two cases: in the class of solutions which converge to the profile 𝑃 faster than the inverse of a polynomial of a large enough degree in time (we will call this a super polynomial convergence), or (without hypothesis on the convergence rate), when all the velocities are positive.
修正Korteweg-de Vries方程多呼吸子的唯一性
摘要。我们考虑了修正的Korteweg-de Vries方程(mKdV),并证明了给定(mKdV)(具有不同速度)的孤子和呼吸子的任意和(mKdV),当𝑡→+∞时,存在(mKdV)的一个解𝑝使得𝑝(𝑡)−(𝑡)→0,我们称之为多呼吸子。为了做到这一点,我们在𝐻2级进行工作(即使通常在𝐻1级考虑孤子)。我们会证明这个收敛发生在任何𝐻𝑠空间而且这个收敛在时间上是指数级快的。我们还证明了所构造的多重呼吸器在两种情况下是唯一的:在收敛到剖面的速度比时间上足够大的多项式的逆更快的解的类别中(我们将其称为超多项式收敛),或者(没有关于收敛率的假设),当所有速度都是正的时候。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信