The Marshall-Olkin Gompertz Distribution: Properties and Applications

IF 1.6 Q1 STATISTICS & PROBABILITY
J. T. Eghwerido, Joel Oruaoghene Ogbo, Adebola Evelyn Omotoye
{"title":"The Marshall-Olkin Gompertz Distribution: Properties and Applications","authors":"J. T. Eghwerido, Joel Oruaoghene Ogbo, Adebola Evelyn Omotoye","doi":"10.6092/ISSN.1973-2201/10993","DOIUrl":null,"url":null,"abstract":"This article introduces three parameters class for lifetime Poisson processes in the Marshall-Olkin transformation family that are increasing, bathtub and skewed. Some structural mathematical properties of the Marshall-Olkin Gompertz (MO-G) model were derived. The MO-G model parameters were established by maximum likelihood approach. The flexibility, efficiency, and behavior of the MO-G model estimators were examined through simulation. The empirical applicability, flexibility and proficiency of the MO-G model was scrutinized by a real-life dataset. The proposed MO-G model provides a better fit when compared to existing models in statistical literature and can serve as an alternative model to those appearing in modeling Poisson processes.","PeriodicalId":45117,"journal":{"name":"Statistica","volume":"81 1","pages":"183-215"},"PeriodicalIF":1.6000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1973-2201/10993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

This article introduces three parameters class for lifetime Poisson processes in the Marshall-Olkin transformation family that are increasing, bathtub and skewed. Some structural mathematical properties of the Marshall-Olkin Gompertz (MO-G) model were derived. The MO-G model parameters were established by maximum likelihood approach. The flexibility, efficiency, and behavior of the MO-G model estimators were examined through simulation. The empirical applicability, flexibility and proficiency of the MO-G model was scrutinized by a real-life dataset. The proposed MO-G model provides a better fit when compared to existing models in statistical literature and can serve as an alternative model to those appearing in modeling Poisson processes.
Marshall-Olkin-Gompertz分布:性质与应用
本文介绍了Marshall-Olkin变换族中寿命泊松过程的三个参数类,即递增、浴缸和偏斜。导出了Marshall-Olkin-Gompertz(MO-G)模型的一些结构数学性质。采用最大似然法建立了MO-G模型参数。通过仿真检验了MO-G模型估计器的灵活性、效率和行为。MO-G模型的经验适用性、灵活性和熟练程度通过真实数据集进行了仔细检查。与统计文献中的现有模型相比,所提出的MO-G模型提供了更好的拟合,并且可以作为泊松过程建模中出现的模型的替代模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistica
Statistica STATISTICS & PROBABILITY-
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信