{"title":"Critical points of Laplace eigenfunctions on polygons","authors":"C. Judge, Sugata Mondal","doi":"10.1080/03605302.2022.2062572","DOIUrl":null,"url":null,"abstract":"Abstract We study the critical points of Laplace eigenfunctions on polygonal domains with a focus on the second Neumann eigenfunction. We show that if each convex quadrilaterals has no second Neumann eigenfunction with an interior critical point, then there exists a convex quadrilateral with an unstable critical point. We also show that each critical point of a second-Neumann eigenfunction on a Lip-1 polygon with no orthogonal sides is an acute vertex.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2022.2062572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract We study the critical points of Laplace eigenfunctions on polygonal domains with a focus on the second Neumann eigenfunction. We show that if each convex quadrilaterals has no second Neumann eigenfunction with an interior critical point, then there exists a convex quadrilateral with an unstable critical point. We also show that each critical point of a second-Neumann eigenfunction on a Lip-1 polygon with no orthogonal sides is an acute vertex.