Bayesian modeling of multivariate time series of counts

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY
R. Soyer, Di Zhang
{"title":"Bayesian modeling of multivariate time series of counts","authors":"R. Soyer, Di Zhang","doi":"10.1002/wics.1559","DOIUrl":null,"url":null,"abstract":"In this article, we present an overview of recent advances in Bayesian modeling and analysis of multivariate time series of counts. We discuss basic modeling strategies including integer valued autoregressive processes, multivariate Poisson time series and dynamic latent factor models. In so doing, we make a connection with univariate modeling frameworks such as dynamic generalized models, Poisson state space models with gamma evolution and present Bayesian approaches that extend these frameworks to multivariate setting. During our development, recent Bayesian approaches to the analysis of integer valued autoregressive processes and multivariate Poisson models are highlighted and concepts such as “decouple/recouple” and “common random environment” are presented. The role that these concepts play in Bayesian modeling and analysis of multivariate time series are discussed. Computational issues associated with Bayesian inference and forecasting from these models are also considered.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1559","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1559","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present an overview of recent advances in Bayesian modeling and analysis of multivariate time series of counts. We discuss basic modeling strategies including integer valued autoregressive processes, multivariate Poisson time series and dynamic latent factor models. In so doing, we make a connection with univariate modeling frameworks such as dynamic generalized models, Poisson state space models with gamma evolution and present Bayesian approaches that extend these frameworks to multivariate setting. During our development, recent Bayesian approaches to the analysis of integer valued autoregressive processes and multivariate Poisson models are highlighted and concepts such as “decouple/recouple” and “common random environment” are presented. The role that these concepts play in Bayesian modeling and analysis of multivariate time series are discussed. Computational issues associated with Bayesian inference and forecasting from these models are also considered.
多变量计数时间序列的贝叶斯建模
在这篇文章中,我们概述了计数的多变量时间序列的贝叶斯建模和分析的最新进展。我们讨论了基本的建模策略,包括整数值自回归过程、多元泊松时间序列和动态潜在因素模型。在这样做的过程中,我们与单变量建模框架建立了联系,如动态广义模型、具有伽马进化的泊松状态空间模型,并提出了将这些框架扩展到多变量设置的贝叶斯方法。在我们的开发过程中,强调了最近用于分析整值自回归过程和多元泊松模型的贝叶斯方法,并提出了“解耦/补偿”和“公共随机环境”等概念。讨论了这些概念在多元时间序列的贝叶斯建模和分析中的作用。还考虑了与这些模型的贝叶斯推理和预测相关的计算问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信