Use of nickel filler powder in joining SS304-SS316 through microwave hybrid heating technique

Q2 Engineering
Mainak Pal , Shankar Sehgal , Harmesh Kumar , Deepam Goyal
{"title":"Use of nickel filler powder in joining SS304-SS316 through microwave hybrid heating technique","authors":"Mainak Pal ,&nbsp;Shankar Sehgal ,&nbsp;Harmesh Kumar ,&nbsp;Deepam Goyal","doi":"10.1016/j.mprp.2020.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, electromagnetic microwave energy radiations at 2.45 GHz frequency have been utilized to produce 5 mm thick joints of SS304-SS316. Filler powder mixture of fine nickel powder and epoxy blumer 1450XX was taken as interface slurry between the mating faces of the joints. Nano and micro particle sized nickel powder of 70 nm (powder 1), 20 µm (powder 2) and 50 µm (powder 3) were used during three sets of experiments. Activated charcoal powder was utilized as susceptor medium to initiate the microwave heating process. Scanning electron microscopy results showed that the joints were crack free and homogenous. Elemental spectroscopy was carried out to observe and compare the presence of different elemental composition in the joining region with different filler powders.</p></div>","PeriodicalId":18669,"journal":{"name":"Metal Powder Report","volume":"76 ","pages":"Pages S18-S23"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mprp.2020.10.001","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal Powder Report","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026065720303234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 21

Abstract

In this work, electromagnetic microwave energy radiations at 2.45 GHz frequency have been utilized to produce 5 mm thick joints of SS304-SS316. Filler powder mixture of fine nickel powder and epoxy blumer 1450XX was taken as interface slurry between the mating faces of the joints. Nano and micro particle sized nickel powder of 70 nm (powder 1), 20 µm (powder 2) and 50 µm (powder 3) were used during three sets of experiments. Activated charcoal powder was utilized as susceptor medium to initiate the microwave heating process. Scanning electron microscopy results showed that the joints were crack free and homogenous. Elemental spectroscopy was carried out to observe and compare the presence of different elemental composition in the joining region with different filler powders.

采用微波混合加热技术将镍填充粉用于SS304-SS316的接合
在这项工作中,利用频率为2.45 GHz的电磁微波能量辐射产生了5 mm厚的SS304-SS316接头。采用细镍粉与环氧混凝剂1450XX混合填料粉作为接头配合面之间的界面浆料。三组实验分别采用粒径为70 nm(粉末1)、20 µm(粉末2)和50 µm(粉末3)的纳米和微米级镍粉。采用活性炭粉作为感应介质启动微波加热过程。扫描电镜结果表明,接头无裂纹,均质。采用元素光谱法观察并比较了不同填充粉末在连接区的不同元素组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metal Powder Report
Metal Powder Report Engineering-Automotive Engineering
自引率
0.00%
发文量
25
期刊介绍: Metal Powder Report covers the powder metallurgy industry worldwide. Each issue carries news and features on technical trends in the manufacture, research and use of metal powders. Metal Powder Report is recognised by parts manufacturers and end-users worldwide for authoritative and high quality reporting and analysis of the international powder metallurgy industry. Included in your Metal Powder Report subscription will be the PM World Directory. This extensive directory will provide you with a valuable comprehensive guide to suppliers of materials, equipment and services to the PM industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信